state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β s✝ t : Set α s : Set β h : ∀ (x : α), f x ∉ s ⊢ ∀ x ∈ s, ∀ (x_1 : α), ¬f x_1 = x
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h by_cases hs : a ∈ t · right refine' ⟨t \ {a}, _, _⟩ · rw [diff_singleton_subset_iff] assumption · rw [insert_diff_singleton, insert_eq_of_mem hs] · left exact (subset_insert_iff_of_not_mem hs).mp h · rintro (h | ⟨s', h₁, rfl⟩) · exact subset_trans h (subset_insert a s) · exact insert_subset_insert h₁ #align set.powerset_insert Set.powerset_insert /-! ### Lemmas about range of a function. -/ section Range variable {f : ι → α} {s t : Set α} /-- Range of a function. This function is more flexible than `f '' univ`, as the image requires that the domain is in Type and not an arbitrary Sort. -/ def range (f : ι → α) : Set α := { x | ∃ y, f y = x } #align set.range Set.range @[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := Iff.rfl #align set.mem_range Set.mem_range -- Porting note -- @[simp] `simp` can prove this @[mfld_simps] theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩ #align set.mem_range_self Set.mem_range_self theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ ∀ i, p (f i) := by simp #align set.forall_range_iff Set.forall_range_iff theorem forall_subtype_range_iff {p : range f → Prop} : (∀ a : range f, p a) ↔ ∀ i, p ⟨f i, mem_range_self _⟩ := ⟨fun H i => H _, fun H ⟨y, i, hi⟩ => by subst hi apply H⟩ #align set.forall_subtype_range_iff Set.forall_subtype_range_iff theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ ∃ i, p (f i) := by simp #align set.exists_range_iff Set.exists_range_iff theorem exists_range_iff' {p : α → Prop} : (∃ a, a ∈ range f ∧ p a) ↔ ∃ i, p (f i) := by simpa only [exists_prop] using exists_range_iff #align set.exists_range_iff' Set.exists_range_iff' theorem exists_subtype_range_iff {p : range f → Prop} : (∃ a : range f, p a) ↔ ∃ i, p ⟨f i, mem_range_self _⟩ := ⟨fun ⟨⟨a, i, hi⟩, ha⟩ => by subst a exact ⟨i, ha⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩ #align set.exists_subtype_range_iff Set.exists_subtype_range_iff theorem range_iff_surjective : range f = univ ↔ Surjective f := eq_univ_iff_forall #align set.range_iff_surjective Set.range_iff_surjective -- Porting note: Lean4 unfolds `Surjective` here, ruining dot notation alias ⟨_, _root_.Function.Surjective.range_eq⟩ := range_iff_surjective #align function.surjective.range_eq Function.Surjective.range_eq @[simp] theorem image_univ {f : α → β} : f '' univ = range f := by ext simp [image, range] #align set.image_univ Set.image_univ theorem image_subset_range (f : α → β) (s) : f '' s ⊆ range f := by rw [← image_univ]; exact image_subset _ (subset_univ _) #align set.image_subset_range Set.image_subset_range theorem mem_range_of_mem_image (f : α → β) (s) {x : β} (h : x ∈ f '' s) : x ∈ range f := image_subset_range f s h #align set.mem_range_of_mem_image Set.mem_range_of_mem_image theorem _root_.Nat.mem_range_succ (i : ℕ) : i ∈ range Nat.succ ↔ 0 < i := ⟨by rintro ⟨n, rfl⟩ exact Nat.succ_pos n, fun h => ⟨_, Nat.succ_pred_eq_of_pos h⟩⟩ #align nat.mem_range_succ Nat.mem_range_succ theorem Nonempty.preimage' {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : s ⊆ range f) : (f ⁻¹' s).Nonempty := let ⟨_, hy⟩ := hs let ⟨x, hx⟩ := hf hy ⟨x, Set.mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage' Set.Nonempty.preimage' theorem range_comp (g : α → β) (f : ι → α) : range (g ∘ f) = g '' range f := Subset.antisymm (forall_range_iff.mpr fun _ => mem_image_of_mem g (mem_range_self _)) (ball_image_iff.mpr <| forall_range_iff.mpr mem_range_self) #align set.range_comp Set.range_comp theorem range_subset_iff : range f ⊆ s ↔ ∀ y, f y ∈ s := forall_range_iff #align set.range_subset_iff Set.range_subset_iff theorem range_subset_range_iff_exists_comp {f : α → γ} {g : β → γ} : range f ⊆ range g ↔ ∃ h : α → β, f = g ∘ h := by simp only [range_subset_iff, mem_range, Classical.skolem, Function.funext_iff, (· ∘ ·), eq_comm] theorem range_eq_iff (f : α → β) (s : Set β) : range f = s ↔ (∀ a, f a ∈ s) ∧ ∀ b ∈ s, ∃ a, f a = b := by rw [← range_subset_iff] exact le_antisymm_iff #align set.range_eq_iff Set.range_eq_iff theorem range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g := by rw [range_comp]; apply image_subset_range #align set.range_comp_subset_range Set.range_comp_subset_range theorem range_nonempty_iff_nonempty : (range f).Nonempty ↔ Nonempty ι := ⟨fun ⟨_, x, _⟩ => ⟨x⟩, fun ⟨x⟩ => ⟨f x, mem_range_self x⟩⟩ #align set.range_nonempty_iff_nonempty Set.range_nonempty_iff_nonempty theorem range_nonempty [h : Nonempty ι] (f : ι → α) : (range f).Nonempty := range_nonempty_iff_nonempty.2 h #align set.range_nonempty Set.range_nonempty @[simp] theorem range_eq_empty_iff {f : ι → α} : range f = ∅ ↔ IsEmpty ι := by rw [← not_nonempty_iff, ← range_nonempty_iff_nonempty, not_nonempty_iff_eq_empty] #align set.range_eq_empty_iff Set.range_eq_empty_iff theorem range_eq_empty [IsEmpty ι] (f : ι → α) : range f = ∅ := range_eq_empty_iff.2 ‹_› #align set.range_eq_empty Set.range_eq_empty instance instNonemptyRange [Nonempty ι] (f : ι → α) : Nonempty (range f) := (range_nonempty f).to_subtype @[simp] theorem image_union_image_compl_eq_range (f : α → β) : f '' s ∪ f '' sᶜ = range f := by rw [← image_union, ← image_univ, ← union_compl_self] #align set.image_union_image_compl_eq_range Set.image_union_image_compl_eq_range theorem insert_image_compl_eq_range (f : α → β) (x : α) : insert (f x) (f '' {x}ᶜ) = range f := by rw [← image_insert_eq, insert_eq, union_compl_self, image_univ] #align set.insert_image_compl_eq_range Set.insert_image_compl_eq_range theorem image_preimage_eq_inter_range {f : α → β} {t : Set β} : f '' (f ⁻¹' t) = t ∩ range f := ext fun x => ⟨fun ⟨x, hx, HEq⟩ => HEq ▸ ⟨hx, mem_range_self _⟩, fun ⟨hx, ⟨y, h_eq⟩⟩ => h_eq ▸ mem_image_of_mem f <| show y ∈ f ⁻¹' t by rw [preimage, mem_setOf, h_eq]; exact hx⟩ #align set.image_preimage_eq_inter_range Set.image_preimage_eq_inter_range theorem image_preimage_eq_of_subset {f : α → β} {s : Set β} (hs : s ⊆ range f) : f '' (f ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs] #align set.image_preimage_eq_of_subset Set.image_preimage_eq_of_subset theorem image_preimage_eq_iff {f : α → β} {s : Set β} : f '' (f ⁻¹' s) = s ↔ s ⊆ range f := ⟨by intro h rw [← h] apply image_subset_range, image_preimage_eq_of_subset⟩ #align set.image_preimage_eq_iff Set.image_preimage_eq_iff theorem subset_range_iff_exists_image_eq {f : α → β} {s : Set β} : s ⊆ range f ↔ ∃ t, f '' t = s := ⟨fun h => ⟨_, image_preimage_eq_iff.2 h⟩, fun ⟨_, ht⟩ => ht ▸ image_subset_range _ _⟩ #align set.subset_range_iff_exists_image_eq Set.subset_range_iff_exists_image_eq theorem range_image (f : α → β) : range (image f) = 𝒫 range f := ext fun _ => subset_range_iff_exists_image_eq.symm #align set.range_image Set.range_image @[simp] theorem exists_subset_range_and_iff {f : α → β} {p : Set β → Prop} : (∃ s, s ⊆ range f ∧ p s) ↔ ∃ s, p (f '' s) := by rw [← exists_range_iff, range_image]; rfl #align set.exists_subset_range_and_iff Set.exists_subset_range_and_iff theorem exists_subset_range_iff {f : α → β} {p : Set β → Prop} : (∃ (s : _) (_ : s ⊆ range f), p s) ↔ ∃ s, p (f '' s) := by simp #align set.exists_subset_range_iff Set.exists_subset_range_iff theorem forall_subset_range_iff {f : α → β} {p : Set β → Prop} : (∀ s, s ⊆ range f → p s) ↔ ∀ s, p (f '' s) := by rw [← forall_range_iff, range_image]; rfl theorem preimage_subset_preimage_iff {s t : Set α} {f : β → α} (hs : s ⊆ range f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by constructor · intro h x hx rcases hs hx with ⟨y, rfl⟩ exact h hx intro h x; apply h #align set.preimage_subset_preimage_iff Set.preimage_subset_preimage_iff theorem preimage_eq_preimage' {s t : Set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := by constructor · intro h apply Subset.antisymm · rw [← preimage_subset_preimage_iff hs, h] · rw [← preimage_subset_preimage_iff ht, h] rintro rfl; rfl #align set.preimage_eq_preimage' Set.preimage_eq_preimage' -- Porting note: -- @[simp] `simp` can prove this theorem preimage_inter_range {f : α → β} {s : Set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s := Set.ext fun x => and_iff_left ⟨x, rfl⟩ #align set.preimage_inter_range Set.preimage_inter_range -- Porting note: -- @[simp] `simp` can prove this theorem preimage_range_inter {f : α → β} {s : Set β} : f ⁻¹' (range f ∩ s) = f ⁻¹' s := by rw [inter_comm, preimage_inter_range] #align set.preimage_range_inter Set.preimage_range_inter theorem preimage_image_preimage {f : α → β} {s : Set β} : f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s := by rw [image_preimage_eq_inter_range, preimage_inter_range] #align set.preimage_image_preimage Set.preimage_image_preimage @[simp, mfld_simps] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id #align set.range_id Set.range_id @[simp, mfld_simps] theorem range_id' : (range fun x : α => x) = univ := range_id #align set.range_id' Set.range_id' @[simp] theorem _root_.Prod.range_fst [Nonempty β] : range (Prod.fst : α × β → α) = univ := Prod.fst_surjective.range_eq #align prod.range_fst Prod.range_fst @[simp] theorem _root_.Prod.range_snd [Nonempty α] : range (Prod.snd : α × β → β) = univ := Prod.snd_surjective.range_eq #align prod.range_snd Prod.range_snd @[simp] theorem range_eval {α : ι → Sort _} [∀ i, Nonempty (α i)] (i : ι) : range (eval i : (∀ i, α i) → α i) = univ := (surjective_eval i).range_eq #align set.range_eval Set.range_eval theorem range_inl : range (@Sum.inl α β) = {x | Sum.isLeft x} := by ext (_|_) <;> simp #align set.range_inl Set.range_inl theorem range_inr : range (@Sum.inr α β) = {x | Sum.isRight x} := by ext (_|_) <;> simp #align set.range_inr Set.range_inr theorem isCompl_range_inl_range_inr : IsCompl (range <| @Sum.inl α β) (range Sum.inr) := IsCompl.of_le (by rintro y ⟨⟨x₁, rfl⟩, ⟨x₂, h⟩⟩ exact Sum.noConfusion h) (by rintro (x | y) - <;> [left; right] <;> exact mem_range_self _) #align set.is_compl_range_inl_range_inr Set.isCompl_range_inl_range_inr @[simp] theorem range_inl_union_range_inr : range (Sum.inl : α → Sum α β) ∪ range Sum.inr = univ := isCompl_range_inl_range_inr.sup_eq_top #align set.range_inl_union_range_inr Set.range_inl_union_range_inr @[simp] theorem range_inl_inter_range_inr : range (Sum.inl : α → Sum α β) ∩ range Sum.inr = ∅ := isCompl_range_inl_range_inr.inf_eq_bot #align set.range_inl_inter_range_inr Set.range_inl_inter_range_inr @[simp] theorem range_inr_union_range_inl : range (Sum.inr : β → Sum α β) ∪ range Sum.inl = univ := isCompl_range_inl_range_inr.symm.sup_eq_top #align set.range_inr_union_range_inl Set.range_inr_union_range_inl @[simp] theorem range_inr_inter_range_inl : range (Sum.inr : β → Sum α β) ∩ range Sum.inl = ∅ := isCompl_range_inl_range_inr.symm.inf_eq_bot #align set.range_inr_inter_range_inl Set.range_inr_inter_range_inl @[simp] theorem preimage_inl_image_inr (s : Set β) : Sum.inl ⁻¹' (@Sum.inr α β '' s) = ∅ := by ext simp #align set.preimage_inl_image_inr Set.preimage_inl_image_inr @[simp] theorem preimage_inr_image_inl (s : Set α) : Sum.inr ⁻¹' (@Sum.inl α β '' s) = ∅ := by ext simp #align set.preimage_inr_image_inl Set.preimage_inr_image_inl @[simp] theorem preimage_inl_range_inr : Sum.inl ⁻¹' range (Sum.inr : β → Sum α β) = ∅ := by rw [← image_univ, preimage_inl_image_inr] #align set.preimage_inl_range_inr Set.preimage_inl_range_inr @[simp] theorem preimage_inr_range_inl : Sum.inr ⁻¹' range (Sum.inl : α → Sum α β) = ∅ := by rw [← image_univ, preimage_inr_image_inl] #align set.preimage_inr_range_inl Set.preimage_inr_range_inl @[simp] theorem compl_range_inl : (range (Sum.inl : α → Sum α β))ᶜ = range (Sum.inr : β → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr #align set.compl_range_inl Set.compl_range_inl @[simp] theorem compl_range_inr : (range (Sum.inr : β → Sum α β))ᶜ = range (Sum.inl : α → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr.symm #align set.compl_range_inr Set.compl_range_inr theorem image_preimage_inl_union_image_preimage_inr (s : Set (Sum α β)) : Sum.inl '' (Sum.inl ⁻¹' s) ∪ Sum.inr '' (Sum.inr ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, ← inter_distrib_left, range_inl_union_range_inr, inter_univ] #align set.image_preimage_inl_union_image_preimage_inr Set.image_preimage_inl_union_image_preimage_inr @[simp] theorem range_quot_mk (r : α → α → Prop) : range (Quot.mk r) = univ := (surjective_quot_mk r).range_eq #align set.range_quot_mk Set.range_quot_mk @[simp] theorem range_quot_lift {r : ι → ι → Prop} (hf : ∀ x y, r x y → f x = f y) : range (Quot.lift f hf) = range f := ext fun _ => (surjective_quot_mk _).exists #align set.range_quot_lift Set.range_quot_lift -- Porting note: the `Setoid α` instance is not being filled in @[simp] theorem range_quotient_mk [sa : Setoid α] : (range (α := Quotient sa) fun x : α => ⟦x⟧) = univ := range_quot_mk _ #align set.range_quotient_mk Set.range_quotient_mk @[simp] theorem range_quotient_lift [s : Setoid ι] (hf) : range (Quotient.lift f hf : Quotient s → α) = range f := range_quot_lift _ #align set.range_quotient_lift Set.range_quotient_lift @[simp] theorem range_quotient_mk' {s : Setoid α} : range (Quotient.mk' : α → Quotient s) = univ := range_quot_mk _ #align set.range_quotient_mk' Set.range_quotient_mk' @[simp] lemma Quotient.range_mk'' {sa : Setoid α} : range (Quotient.mk'' (s₁ := sa)) = univ := range_quotient_mk @[simp] theorem range_quotient_lift_on' {s : Setoid ι} (hf) : (range fun x : Quotient s => Quotient.liftOn' x f hf) = range f := range_quot_lift _ #align set.range_quotient_lift_on' Set.range_quotient_lift_on' instance canLift (c) (p) [CanLift α β c p] : CanLift (Set α) (Set β) (c '' ·) fun s => ∀ x ∈ s, p x where prf _ hs := subset_range_iff_exists_image_eq.mp fun x hx => CanLift.prf _ (hs x hx) #align set.can_lift Set.canLift theorem range_const_subset {c : α} : (range fun _ : ι => c) ⊆ {c} := range_subset_iff.2 fun _ => rfl #align set.range_const_subset Set.range_const_subset @[simp] theorem range_const : ∀ [Nonempty ι] {c : α}, (range fun _ : ι => c) = {c} | ⟨x⟩, _ => (Subset.antisymm range_const_subset) fun _ hy => (mem_singleton_iff.1 hy).symm ▸ mem_range_self x #align set.range_const Set.range_const theorem range_subtype_map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀ x, p x → q (f x)) : range (Subtype.map f h) = (↑) ⁻¹' (f '' { x | p x }) := by ext ⟨x, hx⟩ rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.coe_mk] apply Iff.intro · rintro ⟨a, b, hab⟩ rw [Subtype.map, Subtype.mk.injEq] at hab use a trivial · rintro ⟨a, b, hab⟩ use a use b rw [Subtype.map, Subtype.mk.injEq] exact hab -- Porting note: `simp_rw` fails here -- simp_rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.map, Subtype.coe_mk, -- mem_set_of, exists_prop] #align set.range_subtype_map Set.range_subtype_map theorem image_swap_eq_preimage_swap : image (@Prod.swap α β) = preimage Prod.swap := image_eq_preimage_of_inverse Prod.swap_leftInverse Prod.swap_rightInverse #align set.image_swap_eq_preimage_swap Set.image_swap_eq_preimage_swap theorem preimage_singleton_nonempty {f : α → β} {y : β} : (f ⁻¹' {y}).Nonempty ↔ y ∈ range f := Iff.rfl #align set.preimage_singleton_nonempty Set.preimage_singleton_nonempty theorem preimage_singleton_eq_empty {f : α → β} {y : β} : f ⁻¹' {y} = ∅ ↔ y ∉ range f := not_nonempty_iff_eq_empty.symm.trans preimage_singleton_nonempty.not #align set.preimage_singleton_eq_empty Set.preimage_singleton_eq_empty theorem range_subset_singleton {f : ι → α} {x : α} : range f ⊆ {x} ↔ f = const ι x := by simp [range_subset_iff, funext_iff, mem_singleton] #align set.range_subset_singleton Set.range_subset_singleton theorem image_compl_preimage {f : α → β} {s : Set β} : f '' (f ⁻¹' s)ᶜ = range f \ s := by rw [compl_eq_univ_diff, image_diff_preimage, image_univ] #align set.image_compl_preimage Set.image_compl_preimage /-- Any map `f : ι → β` factors through a map `rangeFactorization f : ι → range f`. -/ def rangeFactorization (f : ι → β) : ι → range f := fun i => ⟨f i, mem_range_self i⟩ #align set.range_factorization Set.rangeFactorization theorem rangeFactorization_eq {f : ι → β} : Subtype.val ∘ rangeFactorization f = f := funext fun _ => rfl #align set.range_factorization_eq Set.rangeFactorization_eq @[simp] theorem rangeFactorization_coe (f : ι → β) (a : ι) : (rangeFactorization f a : β) = f a := rfl #align set.range_factorization_coe Set.rangeFactorization_coe @[simp] theorem coe_comp_rangeFactorization (f : ι → β) : (↑) ∘ rangeFactorization f = f := rfl #align set.coe_comp_range_factorization Set.coe_comp_rangeFactorization theorem surjective_onto_range : Surjective (rangeFactorization f) := fun ⟨_, ⟨i, rfl⟩⟩ => ⟨i, rfl⟩ #align set.surjective_onto_range Set.surjective_onto_range theorem image_eq_range (f : α → β) (s : Set α) : f '' s = range fun x : s => f x := by ext constructor rintro ⟨x, h1, h2⟩ exact ⟨⟨x, h1⟩, h2⟩ rintro ⟨⟨x, h1⟩, h2⟩ exact ⟨x, h1, h2⟩ #align set.image_eq_range Set.image_eq_range theorem _root_.Sum.range_eq (f : Sum α β → γ) : range f = range (f ∘ Sum.inl) ∪ range (f ∘ Sum.inr) := ext fun _ => Sum.exists #align sum.range_eq Sum.range_eq @[simp] theorem Sum.elim_range (f : α → γ) (g : β → γ) : range (Sum.elim f g) = range f ∪ range g := Sum.range_eq _ #align set.sum.elim_range Set.Sum.elim_range theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g := by by_cases h : p · rw [if_pos h] exact subset_union_left _ _ · rw [if_neg h] exact subset_union_right _ _ #align set.range_ite_subset' Set.range_ite_subset' theorem range_ite_subset {p : α → Prop} [DecidablePred p] {f g : α → β} : (range fun x => if p x then f x else g x) ⊆ range f ∪ range g := by rw [range_subset_iff]; intro x; by_cases h : p x simp only [if_pos h, mem_union, mem_range, exists_apply_eq_apply, true_or] simp [if_neg h, mem_union, mem_range_self] #align set.range_ite_subset Set.range_ite_subset @[simp] theorem preimage_range (f : α → β) : f ⁻¹' range f = univ := eq_univ_of_forall mem_range_self #align set.preimage_range Set.preimage_range /-- The range of a function from a `Unique` type contains just the function applied to its single value. -/ theorem range_unique [h : Unique ι] : range f = {f default} := by ext x rw [mem_range] constructor · rintro ⟨i, hi⟩ rw [h.uniq i] at hi exact hi ▸ mem_singleton _ · exact fun h => ⟨default, h.symm⟩ #align set.range_unique Set.range_unique theorem range_diff_image_subset (f : α → β) (s : Set α) : range f \ f '' s ⊆ f '' sᶜ := fun _ ⟨⟨x, h₁⟩, h₂⟩ => ⟨x, fun h => h₂ ⟨x, h, h₁⟩, h₁⟩ #align set.range_diff_image_subset Set.range_diff_image_subset theorem range_diff_image {f : α → β} (H : Injective f) (s : Set α) : range f \ f '' s = f '' sᶜ := (Subset.antisymm (range_diff_image_subset f s)) fun _ ⟨_, hx, hy⟩ => hy ▸ ⟨mem_range_self _, fun ⟨_, hx', Eq⟩ => hx <| H Eq ▸ hx'⟩ #align set.range_diff_image Set.range_diff_image @[simp] theorem range_inclusion (h : s ⊆ t) : range (inclusion h) = { x : t | (x : α) ∈ s } := by ext ⟨x, hx⟩ -- Porting note: `simp [inclusion]` doesn't solve goal apply Iff.intro · rw [mem_range] rintro ⟨a, ha⟩ rw [inclusion, Subtype.mk.injEq] at ha rw [mem_setOf, Subtype.coe_mk, ← ha] exact Subtype.coe_prop _ · rw [mem_setOf, Subtype.coe_mk, mem_range] intro hx' use ⟨x, hx'⟩ trivial -- simp_rw [inclusion, mem_range, Subtype.mk_eq_mk] -- rw [SetCoe.exists, Subtype.coe_mk, exists_prop, exists_eq_right, mem_set_of, Subtype.coe_mk] #align set.range_inclusion Set.range_inclusion /-- We can use the axiom of choice to pick a preimage for every element of `range f`. -/ noncomputable def rangeSplitting (f : α → β) : range f → α := fun x => x.2.choose #align set.range_splitting Set.rangeSplitting -- This can not be a `@[simp]` lemma because the head of the left hand side is a variable. theorem apply_rangeSplitting (f : α → β) (x : range f) : f (rangeSplitting f x) = x := x.2.choose_spec #align set.apply_range_splitting Set.apply_rangeSplitting @[simp] theorem comp_rangeSplitting (f : α → β) : f ∘ rangeSplitting f = (↑) := by ext simp only [Function.comp_apply] apply apply_rangeSplitting #align set.comp_range_splitting Set.comp_rangeSplitting -- When `f` is injective, see also `Equiv.ofInjective`. theorem leftInverse_rangeSplitting (f : α → β) : LeftInverse (rangeFactorization f) (rangeSplitting f) := fun x => by apply Subtype.ext -- Porting note: why doesn't `ext` find this lemma? simp only [rangeFactorization_coe] apply apply_rangeSplitting #align set.left_inverse_range_splitting Set.leftInverse_rangeSplitting theorem rangeSplitting_injective (f : α → β) : Injective (rangeSplitting f) := (leftInverse_rangeSplitting f).injective #align set.range_splitting_injective Set.rangeSplitting_injective theorem rightInverse_rangeSplitting {f : α → β} (h : Injective f) : RightInverse (rangeFactorization f) (rangeSplitting f) := (leftInverse_rangeSplitting f).rightInverse_of_injective fun _ _ hxy => h <| Subtype.ext_iff.1 hxy #align set.right_inverse_range_splitting Set.rightInverse_rangeSplitting theorem preimage_rangeSplitting {f : α → β} (hf : Injective f) : preimage (rangeSplitting f) = image (rangeFactorization f) := (image_eq_preimage_of_inverse (rightInverse_rangeSplitting hf) (leftInverse_rangeSplitting f)).symm #align set.preimage_range_splitting Set.preimage_rangeSplitting theorem isCompl_range_some_none (α : Type*) : IsCompl (range (some : α → Option α)) {none} := IsCompl.of_le (fun _ ⟨⟨_, ha⟩, (hn : _ = none)⟩ => Option.some_ne_none _ (ha.trans hn)) fun x _ => Option.casesOn x (Or.inr rfl) fun _ => Or.inl <| mem_range_self _ #align set.is_compl_range_some_none Set.isCompl_range_some_none @[simp] theorem compl_range_some (α : Type*) : (range (some : α → Option α))ᶜ = {none} := (isCompl_range_some_none α).compl_eq #align set.compl_range_some Set.compl_range_some @[simp] theorem range_some_inter_none (α : Type*) : range (some : α → Option α) ∩ {none} = ∅ := (isCompl_range_some_none α).inf_eq_bot #align set.range_some_inter_none Set.range_some_inter_none -- Porting note: -- @[simp] `simp` can prove this theorem range_some_union_none (α : Type*) : range (some : α → Option α) ∪ {none} = univ := (isCompl_range_some_none α).sup_eq_top #align set.range_some_union_none Set.range_some_union_none @[simp] theorem insert_none_range_some (α : Type*) : insert none (range (some : α → Option α)) = univ := (isCompl_range_some_none α).symm.sup_eq_top #align set.insert_none_range_some Set.insert_none_range_some end Range section Subsingleton variable {s : Set α} /-- The image of a subsingleton is a subsingleton. -/ theorem Subsingleton.image (hs : s.Subsingleton) (f : α → β) : (f '' s).Subsingleton := fun _ ⟨_, hx, Hx⟩ _ ⟨_, hy, Hy⟩ => Hx ▸ Hy ▸ congr_arg f (hs hx hy) #align set.subsingleton.image Set.Subsingleton.image /-- The preimage of a subsingleton under an injective map is a subsingleton. -/ theorem Subsingleton.preimage {s : Set β} (hs : s.Subsingleton) {f : α → β} (hf : Function.Injective f) : (f ⁻¹' s).Subsingleton := fun _ ha _ hb => hf <| hs ha hb #align set.subsingleton.preimage Set.Subsingleton.preimage /-- If the image of a set under an injective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_image {f : α → β} (hf : Function.Injective f) (s : Set α) (hs : (f '' s).Subsingleton) : s.Subsingleton := (hs.preimage hf).anti <| subset_preimage_image _ _ #align set.subsingleton_of_image Set.subsingleton_of_image /-- If the preimage of a set under a surjective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_preimage {f : α → β} (hf : Function.Surjective f) (s : Set β) (hs : (f ⁻¹' s).Subsingleton) : s.Subsingleton := fun fx hx fy hy => by rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact congr_arg f (hs hx hy) #align set.subsingleton_of_preimage Set.subsingleton_of_preimage theorem subsingleton_range {α : Sort*} [Subsingleton α] (f : α → β) : (range f).Subsingleton := forall_range_iff.2 fun x => forall_range_iff.2 fun y => congr_arg f (Subsingleton.elim x y) #align set.subsingleton_range Set.subsingleton_range /-- The preimage of a nontrivial set under a surjective map is nontrivial. -/ theorem Nontrivial.preimage {s : Set β} (hs : s.Nontrivial) {f : α → β} (hf : Function.Surjective f) : (f ⁻¹' s).Nontrivial := by rcases hs with ⟨fx, hx, fy, hy, hxy⟩ rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial.preimage Set.Nontrivial.preimage /-- The image of a nontrivial set under an injective map is nontrivial. -/ theorem Nontrivial.image (hs : s.Nontrivial) {f : α → β} (hf : Function.Injective f) : (f '' s).Nontrivial := let ⟨x, hx, y, hy, hxy⟩ := hs ⟨f x, mem_image_of_mem f hx, f y, mem_image_of_mem f hy, hf.ne hxy⟩ #align set.nontrivial.image Set.Nontrivial.image /-- If the image of a set is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_image (f : α → β) (s : Set α) (hs : (f '' s).Nontrivial) : s.Nontrivial := let ⟨_, ⟨x, hx, rfl⟩, _, ⟨y, hy, rfl⟩, hxy⟩ := hs ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial_of_image Set.nontrivial_of_image /-- If the preimage of a set under an injective map is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_preimage {f : α → β} (hf : Function.Injective f) (s : Set β) (hs : (f ⁻¹' s).Nontrivial) : s.Nontrivial := (hs.image hf).mono <| image_preimage_subset _ _ #align set.nontrivial_of_preimage Set.nontrivial_of_preimage end Subsingleton end Set namespace Function variable {ι : Sort*} {f : α → β} open Set theorem Surjective.preimage_injective (hf : Surjective f) : Injective (preimage f) := fun _ _ => (preimage_eq_preimage hf).1 #align function.surjective.preimage_injective Function.Surjective.preimage_injective theorem Injective.preimage_image (hf : Injective f) (s : Set α) : f ⁻¹' (f '' s) = s := preimage_image_eq s hf #align function.injective.preimage_image Function.Injective.preimage_image theorem Injective.preimage_surjective (hf : Injective f) : Surjective (preimage f) := by intro s use f '' s rw [hf.preimage_image] #align function.injective.preimage_surjective Function.Injective.preimage_surjective theorem Injective.subsingleton_image_iff (hf : Injective f) {s : Set α} : (f '' s).Subsingleton ↔ s.Subsingleton := ⟨subsingleton_of_image hf s, fun h => h.image f⟩ #align function.injective.subsingleton_image_iff Function.Injective.subsingleton_image_iff theorem Surjective.image_preimage (hf : Surjective f) (s : Set β) : f '' (f ⁻¹' s) = s := image_preimage_eq s hf #align function.surjective.image_preimage Function.Surjective.image_preimage theorem Surjective.image_surjective (hf : Surjective f) : Surjective (image f) := by intro s use f ⁻¹' s rw [hf.image_preimage] #align function.surjective.image_surjective Function.Surjective.image_surjective @[simp] theorem Surjective.nonempty_preimage (hf : Surjective f) {s : Set β} : (f ⁻¹' s).Nonempty ↔ s.Nonempty := by rw [← nonempty_image_iff, hf.image_preimage] #align function.surjective.nonempty_preimage Function.Surjective.nonempty_preimage theorem Injective.image_injective (hf : Injective f) : Injective (image f) := by intro s t h rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, h] #align function.injective.image_injective Function.Injective.image_injective theorem Surjective.preimage_subset_preimage_iff {s t : Set β} (hf : Surjective f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by apply Set.preimage_subset_preimage_iff rw [hf.range_eq] apply subset_univ #align function.surjective.preimage_subset_preimage_iff Function.Surjective.preimage_subset_preimage_iff theorem Surjective.range_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) : range (g ∘ f) = range g := ext fun y => (@Surjective.exists _ _ _ hf fun x => g x = y).symm #align function.surjective.range_comp Function.Surjective.range_comp theorem Injective.mem_range_iff_exists_unique (hf : Injective f) {b : β} : b ∈ range f ↔ ∃! a, f a = b := ⟨fun ⟨a, h⟩ => ⟨a, h, fun _ ha => hf (ha.trans h.symm)⟩, ExistsUnique.exists⟩ #align function.injective.mem_range_iff_exists_unique Function.Injective.mem_range_iff_exists_unique theorem Injective.exists_unique_of_mem_range (hf : Injective f) {b : β} (hb : b ∈ range f) : ∃! a, f a = b := hf.mem_range_iff_exists_unique.mp hb #align function.injective.exists_unique_of_mem_range Function.Injective.exists_unique_of_mem_range theorem Injective.compl_image_eq (hf : Injective f) (s : Set α) : (f '' s)ᶜ = f '' sᶜ ∪ (range f)ᶜ := by ext y rcases em (y ∈ range f) with (⟨x, rfl⟩ | hx) · simp [hf.eq_iff] · rw [mem_range, not_exists] at hx simp [hx] #align function.injective.compl_image_eq Function.Injective.compl_image_eq theorem LeftInverse.image_image {g : β → α} (h : LeftInverse g f) (s : Set α) : g '' (f '' s) = s := by rw [← image_comp, h.comp_eq_id, image_id] #align function.left_inverse.image_image Function.LeftInverse.image_image theorem LeftInverse.preimage_preimage {g : β → α} (h : LeftInverse g f) (s : Set α) : f ⁻¹' (g ⁻¹' s) = s := by rw [← preimage_comp, h.comp_eq_id, preimage_id] #align function.left_inverse.preimage_preimage Function.LeftInverse.preimage_preimage protected theorem Involutive.preimage {f : α → α} (hf : Involutive f) : Involutive (preimage f) := hf.rightInverse.preimage_preimage #align function.involutive.preimage Function.Involutive.preimage end Function namespace EquivLike variable {E : Type*} [EquivLike E ι ι'] @[simp] lemma range_comp (f : ι' → α) (e : E) : range (f ∘ e) = range f := (EquivLike.surjective _).range_comp _ #align equiv_like.range_comp EquivLike.range_comp end EquivLike /-! ### Image and preimage on subtypes -/ namespace Subtype variable {α : Type*} theorem coe_image {p : α → Prop} {s : Set (Subtype p)} : (↑) '' s = { x | ∃ h : p x, (⟨x, h⟩ : Subtype p) ∈ s } := Set.ext fun a => ⟨fun ⟨⟨_, ha'⟩, in_s, h_eq⟩ => h_eq ▸ ⟨ha', in_s⟩, fun ⟨ha, in_s⟩ => ⟨⟨a, ha⟩, in_s, rfl⟩⟩ #align subtype.coe_image Subtype.coe_image @[simp] theorem coe_image_of_subset {s t : Set α} (h : t ⊆ s) : (↑) '' { x : ↥s | ↑x ∈ t } = t := by ext x rw [mem_image] exact ⟨fun ⟨_, hx', hx⟩ => hx ▸ hx', fun hx => ⟨⟨x, h hx⟩, hx, rfl⟩⟩ #align subtype.coe_image_of_subset Subtype.coe_image_of_subset theorem range_coe {s : Set α} : range ((↑) : s → α) = s := by rw [← image_univ] simp [-image_univ, coe_image] #align subtype.range_coe Subtype.range_coe /-- A variant of `range_coe`. Try to use `range_coe` if possible. This version is useful when defining a new type that is defined as the subtype of something. In that case, the coercion doesn't fire anymore. -/ theorem range_val {s : Set α} : range (Subtype.val : s → α) = s := range_coe #align subtype.range_val Subtype.range_val /-- We make this the simp lemma instead of `range_coe`. The reason is that if we write for `s : Set α` the function `(↑) : s → α`, then the inferred implicit arguments of `(↑)` are `↑α (fun x ↦ x ∈ s)`. -/ @[simp] theorem range_coe_subtype {p : α → Prop} : range ((↑) : Subtype p → α) = { x | p x } := range_coe #align subtype.range_coe_subtype Subtype.range_coe_subtype @[simp] theorem coe_preimage_self (s : Set α) : ((↑) : s → α) ⁻¹' s = univ := by rw [← preimage_range, range_coe] #align subtype.coe_preimage_self Subtype.coe_preimage_self theorem range_val_subtype {p : α → Prop} : range (Subtype.val : Subtype p → α) = { x | p x } := range_coe #align subtype.range_val_subtype Subtype.range_val_subtype theorem coe_image_subset (s : Set α) (t : Set s) : ((↑) : s → α) '' t ⊆ s := fun x ⟨y, _, yvaleq⟩ => by rw [← yvaleq]; exact y.property #align subtype.coe_image_subset Subtype.coe_image_subset theorem coe_image_univ (s : Set α) : ((↑) : s → α) '' Set.univ = s := image_univ.trans range_coe #align subtype.coe_image_univ Subtype.coe_image_univ @[simp] theorem image_preimage_coe (s t : Set α) : ((↑) : s → α) '' (((↑) : s → α) ⁻¹' t) = t ∩ s := image_preimage_eq_inter_range.trans <| congr_arg _ range_coe #align subtype.image_preimage_coe Subtype.image_preimage_coe theorem image_preimage_val (s t : Set α) : (Subtype.val : s → α) '' (Subtype.val ⁻¹' t) = t ∩ s := image_preimage_coe s t #align subtype.image_preimage_val Subtype.image_preimage_val theorem preimage_coe_eq_preimage_coe_iff {s t u : Set α} : ((↑) : s → α) ⁻¹' t = ((↑) : s → α) ⁻¹' u ↔ t ∩ s = u ∩ s := by rw [← image_preimage_coe, ← image_preimage_coe, coe_injective.image_injective.eq_iff] #align subtype.preimage_coe_eq_preimage_coe_iff Subtype.preimage_coe_eq_preimage_coe_iff -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_inter_self (s t : Set α) : ((↑) : s → α) ⁻¹' (t ∩ s) = ((↑) : s → α) ⁻¹' t := by rw [preimage_coe_eq_preimage_coe_iff, inter_assoc, inter_self] #align subtype.preimage_coe_inter_self Subtype.preimage_coe_inter_self theorem preimage_val_eq_preimage_val_iff (s t u : Set α) : (Subtype.val : s → α) ⁻¹' t = Subtype.val ⁻¹' u ↔ t ∩ s = u ∩ s := preimage_coe_eq_preimage_coe_iff #align subtype.preimage_val_eq_preimage_val_iff Subtype.preimage_val_eq_preimage_val_iff theorem exists_set_subtype {t : Set α} (p : Set α → Prop) : (∃ s : Set t, p (((↑) : t → α) '' s)) ↔ ∃ s : Set α, s ⊆ t ∧ p s := by rw [← exists_subset_range_and_iff, range_coe] #align subtype.exists_set_subtype Subtype.exists_set_subtype theorem forall_set_subtype {t : Set α} (p : Set α → Prop) : (∀ s : Set t, p (((↑) : t → α) '' s)) ↔ ∀ s : Set α, s ⊆ t → p s := by rw [← forall_subset_range_iff, range_coe] theorem preimage_coe_nonempty {s t : Set α} : (((↑) : s → α) ⁻¹' t).Nonempty ↔ (s ∩ t).Nonempty := by rw [inter_comm, ← image_preimage_coe, nonempty_image_iff] #align subtype.preimage_coe_nonempty Subtype.preimage_coe_nonempty theorem preimage_coe_eq_empty {s t : Set α} : ((↑) : s → α) ⁻¹' t = ∅ ↔ s ∩ t = ∅ := by simp [← not_nonempty_iff_eq_empty, preimage_coe_nonempty] #align subtype.preimage_coe_eq_empty Subtype.preimage_coe_eq_empty -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_compl (s : Set α) : ((↑) : s → α) ⁻¹' sᶜ = ∅ := preimage_coe_eq_empty.2 (inter_compl_self s) #align subtype.preimage_coe_compl Subtype.preimage_coe_compl @[simp] theorem preimage_coe_compl' (s : Set α) : (fun x : (sᶜ : Set α) => (x : α)) ⁻¹' s = ∅ := preimage_coe_eq_empty.2 (compl_inter_self s) #align subtype.preimage_coe_compl' Subtype.preimage_coe_compl' end Subtype /-! ### Images and preimages on `Option` -/ open Set namespace Option theorem injective_iff {α β} {f : Option α → β} : Injective f ↔ Injective (f ∘ some) ∧ f none ∉ range (f ∘ some) := by simp only [mem_range, not_exists, (· ∘ ·)] refine' ⟨fun hf => ⟨hf.comp (Option.some_injective _), fun x => hf.ne <| Option.some_ne_none _⟩, _⟩ rintro ⟨h_some, h_none⟩ (_ | a) (_ | b) hab exacts [rfl, (h_none _ hab.symm).elim, (h_none _ hab).elim, congr_arg some (h_some hab)] #align option.injective_iff Option.injective_iff theorem range_eq {α β} (f : Option α → β) : range f = insert (f none) (range (f ∘ some)) := Set.ext fun _ => Option.exists.trans <| eq_comm.or Iff.rfl #align option.range_eq Option.range_eq end Option theorem WithBot.range_eq {α β} (f : WithBot α → β) : range f = insert (f ⊥) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_bot.range_eq WithBot.range_eq theorem WithTop.range_eq {α β} (f : WithTop α → β) : range f = insert (f ⊤) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_top.range_eq WithTop.range_eq namespace Set open Function /-! ### Injectivity and surjectivity lemmas for image and preimage -/ section ImagePreimage variable {α : Type u} {β : Type v} {f : α → β} @[simp] theorem preimage_injective : Injective (preimage f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.preimage_injective⟩ obtain ⟨x, hx⟩ : (f ⁻¹' {y}).Nonempty := by rw [h.nonempty_apply_iff preimage_empty] apply singleton_nonempty exact ⟨x, hx⟩ #align set.preimage_injective Set.preimage_injective @[simp] theorem preimage_surjective : Surjective (preimage f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.preimage_surjective⟩ cases' h {x} with s hs; have := mem_singleton x rwa [← hs, mem_preimage, hx, ← mem_preimage, hs, mem_singleton_iff, eq_comm] at this #align set.preimage_surjective Set.preimage_surjective @[simp] theorem image_surjective : Surjective (image f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.image_surjective⟩ cases' h {y} with s hs have := mem_singleton y; rw [← hs] at this; rcases this with ⟨x, _, hx⟩ exact ⟨x, hx⟩ #align set.image_surjective Set.image_surjective @[simp] theorem image_injective : Injective (image f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.image_injective⟩ rw [← singleton_eq_singleton_iff]; apply h rw [image_singleton, image_singleton, hx] #align set.image_injective Set.image_injective theorem preimage_eq_iff_eq_image {f : α → β} (hf : Bijective f) {s t} : f ⁻¹' s = t ↔ s = f '' t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.preimage_eq_iff_eq_image Set.preimage_eq_iff_eq_image theorem eq_preimage_iff_image_eq {f : α → β} (hf : Bijective f) {s t} : s = f ⁻¹' t ↔ f '' s = t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.eq_preimage_iff_image_eq Set.eq_preimage_iff_image_eq end ImagePreimage end Set /-! ### Disjoint lemmas for image and preimage -/ section Disjoint variable {α β γ : Type*} {f : α → β} {s t : Set α} theorem Disjoint.preimage (f : α → β) {s t : Set β} (h : Disjoint s t) : Disjoint (f ⁻¹' s) (f ⁻¹' t) := disjoint_iff_inf_le.mpr fun _ hx => h.le_bot hx #align disjoint.preimage Disjoint.preimage namespace Set theorem disjoint_image_image {f : β → α} {g : γ → α} {s : Set β} {t : Set γ} (h : ∀ b ∈ s, ∀ c ∈ t, f b ≠ g c) : Disjoint (f '' s) (g '' t) := disjoint_iff_inf_le.mpr <| by rintro a ⟨⟨b, hb, eq⟩, c, hc, rfl⟩; exact h b hb c hc eq #align set.disjoint_image_image Set.disjoint_image_image theorem disjoint_image_of_injective (hf : Injective f) {s t : Set α} (hd : Disjoint s t) : Disjoint (f '' s) (f '' t) := disjoint_image_image fun _ hx _ hy => hf.ne fun H => Set.disjoint_iff.1 hd ⟨hx, H.symm ▸ hy⟩ #align set.disjoint_image_of_injective Set.disjoint_image_of_injective theorem _root_.Disjoint.of_image (h : Disjoint (f '' s) (f '' t)) : Disjoint s t := disjoint_iff_inf_le.mpr fun _ hx => disjoint_left.1 h (mem_image_of_mem _ hx.1) (mem_image_of_mem _ hx.2) #align disjoint.of_image Disjoint.of_image @[simp] theorem disjoint_image_iff (hf : Injective f) : Disjoint (f '' s) (f '' t) ↔ Disjoint s t := ⟨Disjoint.of_image, disjoint_image_of_injective hf⟩ #align set.disjoint_image_iff Set.disjoint_image_iff theorem _root_.Disjoint.of_preimage (hf : Surjective f) {s t : Set β} (h : Disjoint (f ⁻¹' s) (f ⁻¹' t)) : Disjoint s t := by rw [disjoint_iff_inter_eq_empty, ← image_preimage_eq (_ ∩ _) hf, preimage_inter, h.inter_eq, image_empty] #align disjoint.of_preimage Disjoint.of_preimage @[simp] theorem disjoint_preimage_iff (hf : Surjective f) {s t : Set β} : Disjoint (f ⁻¹' s) (f ⁻¹' t) ↔ Disjoint s t := ⟨Disjoint.of_preimage hf, Disjoint.preimage _⟩ #align set.disjoint_preimage_iff Set.disjoint_preimage_iff theorem preimage_eq_empty {s : Set β} (h : Disjoint s (range f)) : f ⁻¹' s = ∅ := by simpa using h.preimage f #align set.preimage_eq_empty Set.preimage_eq_empty theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢
intro y hy x hx
theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢
Mathlib.Data.Set.Image.1653_0.IJFiTzmYGOCpPSd
theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β s✝ t : Set α s : Set β h : ∀ (x : α), f x ∉ s y : β hy : y ∈ s x : α hx : f x = y ⊢ False
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h by_cases hs : a ∈ t · right refine' ⟨t \ {a}, _, _⟩ · rw [diff_singleton_subset_iff] assumption · rw [insert_diff_singleton, insert_eq_of_mem hs] · left exact (subset_insert_iff_of_not_mem hs).mp h · rintro (h | ⟨s', h₁, rfl⟩) · exact subset_trans h (subset_insert a s) · exact insert_subset_insert h₁ #align set.powerset_insert Set.powerset_insert /-! ### Lemmas about range of a function. -/ section Range variable {f : ι → α} {s t : Set α} /-- Range of a function. This function is more flexible than `f '' univ`, as the image requires that the domain is in Type and not an arbitrary Sort. -/ def range (f : ι → α) : Set α := { x | ∃ y, f y = x } #align set.range Set.range @[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := Iff.rfl #align set.mem_range Set.mem_range -- Porting note -- @[simp] `simp` can prove this @[mfld_simps] theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩ #align set.mem_range_self Set.mem_range_self theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ ∀ i, p (f i) := by simp #align set.forall_range_iff Set.forall_range_iff theorem forall_subtype_range_iff {p : range f → Prop} : (∀ a : range f, p a) ↔ ∀ i, p ⟨f i, mem_range_self _⟩ := ⟨fun H i => H _, fun H ⟨y, i, hi⟩ => by subst hi apply H⟩ #align set.forall_subtype_range_iff Set.forall_subtype_range_iff theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ ∃ i, p (f i) := by simp #align set.exists_range_iff Set.exists_range_iff theorem exists_range_iff' {p : α → Prop} : (∃ a, a ∈ range f ∧ p a) ↔ ∃ i, p (f i) := by simpa only [exists_prop] using exists_range_iff #align set.exists_range_iff' Set.exists_range_iff' theorem exists_subtype_range_iff {p : range f → Prop} : (∃ a : range f, p a) ↔ ∃ i, p ⟨f i, mem_range_self _⟩ := ⟨fun ⟨⟨a, i, hi⟩, ha⟩ => by subst a exact ⟨i, ha⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩ #align set.exists_subtype_range_iff Set.exists_subtype_range_iff theorem range_iff_surjective : range f = univ ↔ Surjective f := eq_univ_iff_forall #align set.range_iff_surjective Set.range_iff_surjective -- Porting note: Lean4 unfolds `Surjective` here, ruining dot notation alias ⟨_, _root_.Function.Surjective.range_eq⟩ := range_iff_surjective #align function.surjective.range_eq Function.Surjective.range_eq @[simp] theorem image_univ {f : α → β} : f '' univ = range f := by ext simp [image, range] #align set.image_univ Set.image_univ theorem image_subset_range (f : α → β) (s) : f '' s ⊆ range f := by rw [← image_univ]; exact image_subset _ (subset_univ _) #align set.image_subset_range Set.image_subset_range theorem mem_range_of_mem_image (f : α → β) (s) {x : β} (h : x ∈ f '' s) : x ∈ range f := image_subset_range f s h #align set.mem_range_of_mem_image Set.mem_range_of_mem_image theorem _root_.Nat.mem_range_succ (i : ℕ) : i ∈ range Nat.succ ↔ 0 < i := ⟨by rintro ⟨n, rfl⟩ exact Nat.succ_pos n, fun h => ⟨_, Nat.succ_pred_eq_of_pos h⟩⟩ #align nat.mem_range_succ Nat.mem_range_succ theorem Nonempty.preimage' {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : s ⊆ range f) : (f ⁻¹' s).Nonempty := let ⟨_, hy⟩ := hs let ⟨x, hx⟩ := hf hy ⟨x, Set.mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage' Set.Nonempty.preimage' theorem range_comp (g : α → β) (f : ι → α) : range (g ∘ f) = g '' range f := Subset.antisymm (forall_range_iff.mpr fun _ => mem_image_of_mem g (mem_range_self _)) (ball_image_iff.mpr <| forall_range_iff.mpr mem_range_self) #align set.range_comp Set.range_comp theorem range_subset_iff : range f ⊆ s ↔ ∀ y, f y ∈ s := forall_range_iff #align set.range_subset_iff Set.range_subset_iff theorem range_subset_range_iff_exists_comp {f : α → γ} {g : β → γ} : range f ⊆ range g ↔ ∃ h : α → β, f = g ∘ h := by simp only [range_subset_iff, mem_range, Classical.skolem, Function.funext_iff, (· ∘ ·), eq_comm] theorem range_eq_iff (f : α → β) (s : Set β) : range f = s ↔ (∀ a, f a ∈ s) ∧ ∀ b ∈ s, ∃ a, f a = b := by rw [← range_subset_iff] exact le_antisymm_iff #align set.range_eq_iff Set.range_eq_iff theorem range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g := by rw [range_comp]; apply image_subset_range #align set.range_comp_subset_range Set.range_comp_subset_range theorem range_nonempty_iff_nonempty : (range f).Nonempty ↔ Nonempty ι := ⟨fun ⟨_, x, _⟩ => ⟨x⟩, fun ⟨x⟩ => ⟨f x, mem_range_self x⟩⟩ #align set.range_nonempty_iff_nonempty Set.range_nonempty_iff_nonempty theorem range_nonempty [h : Nonempty ι] (f : ι → α) : (range f).Nonempty := range_nonempty_iff_nonempty.2 h #align set.range_nonempty Set.range_nonempty @[simp] theorem range_eq_empty_iff {f : ι → α} : range f = ∅ ↔ IsEmpty ι := by rw [← not_nonempty_iff, ← range_nonempty_iff_nonempty, not_nonempty_iff_eq_empty] #align set.range_eq_empty_iff Set.range_eq_empty_iff theorem range_eq_empty [IsEmpty ι] (f : ι → α) : range f = ∅ := range_eq_empty_iff.2 ‹_› #align set.range_eq_empty Set.range_eq_empty instance instNonemptyRange [Nonempty ι] (f : ι → α) : Nonempty (range f) := (range_nonempty f).to_subtype @[simp] theorem image_union_image_compl_eq_range (f : α → β) : f '' s ∪ f '' sᶜ = range f := by rw [← image_union, ← image_univ, ← union_compl_self] #align set.image_union_image_compl_eq_range Set.image_union_image_compl_eq_range theorem insert_image_compl_eq_range (f : α → β) (x : α) : insert (f x) (f '' {x}ᶜ) = range f := by rw [← image_insert_eq, insert_eq, union_compl_self, image_univ] #align set.insert_image_compl_eq_range Set.insert_image_compl_eq_range theorem image_preimage_eq_inter_range {f : α → β} {t : Set β} : f '' (f ⁻¹' t) = t ∩ range f := ext fun x => ⟨fun ⟨x, hx, HEq⟩ => HEq ▸ ⟨hx, mem_range_self _⟩, fun ⟨hx, ⟨y, h_eq⟩⟩ => h_eq ▸ mem_image_of_mem f <| show y ∈ f ⁻¹' t by rw [preimage, mem_setOf, h_eq]; exact hx⟩ #align set.image_preimage_eq_inter_range Set.image_preimage_eq_inter_range theorem image_preimage_eq_of_subset {f : α → β} {s : Set β} (hs : s ⊆ range f) : f '' (f ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs] #align set.image_preimage_eq_of_subset Set.image_preimage_eq_of_subset theorem image_preimage_eq_iff {f : α → β} {s : Set β} : f '' (f ⁻¹' s) = s ↔ s ⊆ range f := ⟨by intro h rw [← h] apply image_subset_range, image_preimage_eq_of_subset⟩ #align set.image_preimage_eq_iff Set.image_preimage_eq_iff theorem subset_range_iff_exists_image_eq {f : α → β} {s : Set β} : s ⊆ range f ↔ ∃ t, f '' t = s := ⟨fun h => ⟨_, image_preimage_eq_iff.2 h⟩, fun ⟨_, ht⟩ => ht ▸ image_subset_range _ _⟩ #align set.subset_range_iff_exists_image_eq Set.subset_range_iff_exists_image_eq theorem range_image (f : α → β) : range (image f) = 𝒫 range f := ext fun _ => subset_range_iff_exists_image_eq.symm #align set.range_image Set.range_image @[simp] theorem exists_subset_range_and_iff {f : α → β} {p : Set β → Prop} : (∃ s, s ⊆ range f ∧ p s) ↔ ∃ s, p (f '' s) := by rw [← exists_range_iff, range_image]; rfl #align set.exists_subset_range_and_iff Set.exists_subset_range_and_iff theorem exists_subset_range_iff {f : α → β} {p : Set β → Prop} : (∃ (s : _) (_ : s ⊆ range f), p s) ↔ ∃ s, p (f '' s) := by simp #align set.exists_subset_range_iff Set.exists_subset_range_iff theorem forall_subset_range_iff {f : α → β} {p : Set β → Prop} : (∀ s, s ⊆ range f → p s) ↔ ∀ s, p (f '' s) := by rw [← forall_range_iff, range_image]; rfl theorem preimage_subset_preimage_iff {s t : Set α} {f : β → α} (hs : s ⊆ range f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by constructor · intro h x hx rcases hs hx with ⟨y, rfl⟩ exact h hx intro h x; apply h #align set.preimage_subset_preimage_iff Set.preimage_subset_preimage_iff theorem preimage_eq_preimage' {s t : Set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := by constructor · intro h apply Subset.antisymm · rw [← preimage_subset_preimage_iff hs, h] · rw [← preimage_subset_preimage_iff ht, h] rintro rfl; rfl #align set.preimage_eq_preimage' Set.preimage_eq_preimage' -- Porting note: -- @[simp] `simp` can prove this theorem preimage_inter_range {f : α → β} {s : Set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s := Set.ext fun x => and_iff_left ⟨x, rfl⟩ #align set.preimage_inter_range Set.preimage_inter_range -- Porting note: -- @[simp] `simp` can prove this theorem preimage_range_inter {f : α → β} {s : Set β} : f ⁻¹' (range f ∩ s) = f ⁻¹' s := by rw [inter_comm, preimage_inter_range] #align set.preimage_range_inter Set.preimage_range_inter theorem preimage_image_preimage {f : α → β} {s : Set β} : f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s := by rw [image_preimage_eq_inter_range, preimage_inter_range] #align set.preimage_image_preimage Set.preimage_image_preimage @[simp, mfld_simps] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id #align set.range_id Set.range_id @[simp, mfld_simps] theorem range_id' : (range fun x : α => x) = univ := range_id #align set.range_id' Set.range_id' @[simp] theorem _root_.Prod.range_fst [Nonempty β] : range (Prod.fst : α × β → α) = univ := Prod.fst_surjective.range_eq #align prod.range_fst Prod.range_fst @[simp] theorem _root_.Prod.range_snd [Nonempty α] : range (Prod.snd : α × β → β) = univ := Prod.snd_surjective.range_eq #align prod.range_snd Prod.range_snd @[simp] theorem range_eval {α : ι → Sort _} [∀ i, Nonempty (α i)] (i : ι) : range (eval i : (∀ i, α i) → α i) = univ := (surjective_eval i).range_eq #align set.range_eval Set.range_eval theorem range_inl : range (@Sum.inl α β) = {x | Sum.isLeft x} := by ext (_|_) <;> simp #align set.range_inl Set.range_inl theorem range_inr : range (@Sum.inr α β) = {x | Sum.isRight x} := by ext (_|_) <;> simp #align set.range_inr Set.range_inr theorem isCompl_range_inl_range_inr : IsCompl (range <| @Sum.inl α β) (range Sum.inr) := IsCompl.of_le (by rintro y ⟨⟨x₁, rfl⟩, ⟨x₂, h⟩⟩ exact Sum.noConfusion h) (by rintro (x | y) - <;> [left; right] <;> exact mem_range_self _) #align set.is_compl_range_inl_range_inr Set.isCompl_range_inl_range_inr @[simp] theorem range_inl_union_range_inr : range (Sum.inl : α → Sum α β) ∪ range Sum.inr = univ := isCompl_range_inl_range_inr.sup_eq_top #align set.range_inl_union_range_inr Set.range_inl_union_range_inr @[simp] theorem range_inl_inter_range_inr : range (Sum.inl : α → Sum α β) ∩ range Sum.inr = ∅ := isCompl_range_inl_range_inr.inf_eq_bot #align set.range_inl_inter_range_inr Set.range_inl_inter_range_inr @[simp] theorem range_inr_union_range_inl : range (Sum.inr : β → Sum α β) ∪ range Sum.inl = univ := isCompl_range_inl_range_inr.symm.sup_eq_top #align set.range_inr_union_range_inl Set.range_inr_union_range_inl @[simp] theorem range_inr_inter_range_inl : range (Sum.inr : β → Sum α β) ∩ range Sum.inl = ∅ := isCompl_range_inl_range_inr.symm.inf_eq_bot #align set.range_inr_inter_range_inl Set.range_inr_inter_range_inl @[simp] theorem preimage_inl_image_inr (s : Set β) : Sum.inl ⁻¹' (@Sum.inr α β '' s) = ∅ := by ext simp #align set.preimage_inl_image_inr Set.preimage_inl_image_inr @[simp] theorem preimage_inr_image_inl (s : Set α) : Sum.inr ⁻¹' (@Sum.inl α β '' s) = ∅ := by ext simp #align set.preimage_inr_image_inl Set.preimage_inr_image_inl @[simp] theorem preimage_inl_range_inr : Sum.inl ⁻¹' range (Sum.inr : β → Sum α β) = ∅ := by rw [← image_univ, preimage_inl_image_inr] #align set.preimage_inl_range_inr Set.preimage_inl_range_inr @[simp] theorem preimage_inr_range_inl : Sum.inr ⁻¹' range (Sum.inl : α → Sum α β) = ∅ := by rw [← image_univ, preimage_inr_image_inl] #align set.preimage_inr_range_inl Set.preimage_inr_range_inl @[simp] theorem compl_range_inl : (range (Sum.inl : α → Sum α β))ᶜ = range (Sum.inr : β → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr #align set.compl_range_inl Set.compl_range_inl @[simp] theorem compl_range_inr : (range (Sum.inr : β → Sum α β))ᶜ = range (Sum.inl : α → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr.symm #align set.compl_range_inr Set.compl_range_inr theorem image_preimage_inl_union_image_preimage_inr (s : Set (Sum α β)) : Sum.inl '' (Sum.inl ⁻¹' s) ∪ Sum.inr '' (Sum.inr ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, ← inter_distrib_left, range_inl_union_range_inr, inter_univ] #align set.image_preimage_inl_union_image_preimage_inr Set.image_preimage_inl_union_image_preimage_inr @[simp] theorem range_quot_mk (r : α → α → Prop) : range (Quot.mk r) = univ := (surjective_quot_mk r).range_eq #align set.range_quot_mk Set.range_quot_mk @[simp] theorem range_quot_lift {r : ι → ι → Prop} (hf : ∀ x y, r x y → f x = f y) : range (Quot.lift f hf) = range f := ext fun _ => (surjective_quot_mk _).exists #align set.range_quot_lift Set.range_quot_lift -- Porting note: the `Setoid α` instance is not being filled in @[simp] theorem range_quotient_mk [sa : Setoid α] : (range (α := Quotient sa) fun x : α => ⟦x⟧) = univ := range_quot_mk _ #align set.range_quotient_mk Set.range_quotient_mk @[simp] theorem range_quotient_lift [s : Setoid ι] (hf) : range (Quotient.lift f hf : Quotient s → α) = range f := range_quot_lift _ #align set.range_quotient_lift Set.range_quotient_lift @[simp] theorem range_quotient_mk' {s : Setoid α} : range (Quotient.mk' : α → Quotient s) = univ := range_quot_mk _ #align set.range_quotient_mk' Set.range_quotient_mk' @[simp] lemma Quotient.range_mk'' {sa : Setoid α} : range (Quotient.mk'' (s₁ := sa)) = univ := range_quotient_mk @[simp] theorem range_quotient_lift_on' {s : Setoid ι} (hf) : (range fun x : Quotient s => Quotient.liftOn' x f hf) = range f := range_quot_lift _ #align set.range_quotient_lift_on' Set.range_quotient_lift_on' instance canLift (c) (p) [CanLift α β c p] : CanLift (Set α) (Set β) (c '' ·) fun s => ∀ x ∈ s, p x where prf _ hs := subset_range_iff_exists_image_eq.mp fun x hx => CanLift.prf _ (hs x hx) #align set.can_lift Set.canLift theorem range_const_subset {c : α} : (range fun _ : ι => c) ⊆ {c} := range_subset_iff.2 fun _ => rfl #align set.range_const_subset Set.range_const_subset @[simp] theorem range_const : ∀ [Nonempty ι] {c : α}, (range fun _ : ι => c) = {c} | ⟨x⟩, _ => (Subset.antisymm range_const_subset) fun _ hy => (mem_singleton_iff.1 hy).symm ▸ mem_range_self x #align set.range_const Set.range_const theorem range_subtype_map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀ x, p x → q (f x)) : range (Subtype.map f h) = (↑) ⁻¹' (f '' { x | p x }) := by ext ⟨x, hx⟩ rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.coe_mk] apply Iff.intro · rintro ⟨a, b, hab⟩ rw [Subtype.map, Subtype.mk.injEq] at hab use a trivial · rintro ⟨a, b, hab⟩ use a use b rw [Subtype.map, Subtype.mk.injEq] exact hab -- Porting note: `simp_rw` fails here -- simp_rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.map, Subtype.coe_mk, -- mem_set_of, exists_prop] #align set.range_subtype_map Set.range_subtype_map theorem image_swap_eq_preimage_swap : image (@Prod.swap α β) = preimage Prod.swap := image_eq_preimage_of_inverse Prod.swap_leftInverse Prod.swap_rightInverse #align set.image_swap_eq_preimage_swap Set.image_swap_eq_preimage_swap theorem preimage_singleton_nonempty {f : α → β} {y : β} : (f ⁻¹' {y}).Nonempty ↔ y ∈ range f := Iff.rfl #align set.preimage_singleton_nonempty Set.preimage_singleton_nonempty theorem preimage_singleton_eq_empty {f : α → β} {y : β} : f ⁻¹' {y} = ∅ ↔ y ∉ range f := not_nonempty_iff_eq_empty.symm.trans preimage_singleton_nonempty.not #align set.preimage_singleton_eq_empty Set.preimage_singleton_eq_empty theorem range_subset_singleton {f : ι → α} {x : α} : range f ⊆ {x} ↔ f = const ι x := by simp [range_subset_iff, funext_iff, mem_singleton] #align set.range_subset_singleton Set.range_subset_singleton theorem image_compl_preimage {f : α → β} {s : Set β} : f '' (f ⁻¹' s)ᶜ = range f \ s := by rw [compl_eq_univ_diff, image_diff_preimage, image_univ] #align set.image_compl_preimage Set.image_compl_preimage /-- Any map `f : ι → β` factors through a map `rangeFactorization f : ι → range f`. -/ def rangeFactorization (f : ι → β) : ι → range f := fun i => ⟨f i, mem_range_self i⟩ #align set.range_factorization Set.rangeFactorization theorem rangeFactorization_eq {f : ι → β} : Subtype.val ∘ rangeFactorization f = f := funext fun _ => rfl #align set.range_factorization_eq Set.rangeFactorization_eq @[simp] theorem rangeFactorization_coe (f : ι → β) (a : ι) : (rangeFactorization f a : β) = f a := rfl #align set.range_factorization_coe Set.rangeFactorization_coe @[simp] theorem coe_comp_rangeFactorization (f : ι → β) : (↑) ∘ rangeFactorization f = f := rfl #align set.coe_comp_range_factorization Set.coe_comp_rangeFactorization theorem surjective_onto_range : Surjective (rangeFactorization f) := fun ⟨_, ⟨i, rfl⟩⟩ => ⟨i, rfl⟩ #align set.surjective_onto_range Set.surjective_onto_range theorem image_eq_range (f : α → β) (s : Set α) : f '' s = range fun x : s => f x := by ext constructor rintro ⟨x, h1, h2⟩ exact ⟨⟨x, h1⟩, h2⟩ rintro ⟨⟨x, h1⟩, h2⟩ exact ⟨x, h1, h2⟩ #align set.image_eq_range Set.image_eq_range theorem _root_.Sum.range_eq (f : Sum α β → γ) : range f = range (f ∘ Sum.inl) ∪ range (f ∘ Sum.inr) := ext fun _ => Sum.exists #align sum.range_eq Sum.range_eq @[simp] theorem Sum.elim_range (f : α → γ) (g : β → γ) : range (Sum.elim f g) = range f ∪ range g := Sum.range_eq _ #align set.sum.elim_range Set.Sum.elim_range theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g := by by_cases h : p · rw [if_pos h] exact subset_union_left _ _ · rw [if_neg h] exact subset_union_right _ _ #align set.range_ite_subset' Set.range_ite_subset' theorem range_ite_subset {p : α → Prop} [DecidablePred p] {f g : α → β} : (range fun x => if p x then f x else g x) ⊆ range f ∪ range g := by rw [range_subset_iff]; intro x; by_cases h : p x simp only [if_pos h, mem_union, mem_range, exists_apply_eq_apply, true_or] simp [if_neg h, mem_union, mem_range_self] #align set.range_ite_subset Set.range_ite_subset @[simp] theorem preimage_range (f : α → β) : f ⁻¹' range f = univ := eq_univ_of_forall mem_range_self #align set.preimage_range Set.preimage_range /-- The range of a function from a `Unique` type contains just the function applied to its single value. -/ theorem range_unique [h : Unique ι] : range f = {f default} := by ext x rw [mem_range] constructor · rintro ⟨i, hi⟩ rw [h.uniq i] at hi exact hi ▸ mem_singleton _ · exact fun h => ⟨default, h.symm⟩ #align set.range_unique Set.range_unique theorem range_diff_image_subset (f : α → β) (s : Set α) : range f \ f '' s ⊆ f '' sᶜ := fun _ ⟨⟨x, h₁⟩, h₂⟩ => ⟨x, fun h => h₂ ⟨x, h, h₁⟩, h₁⟩ #align set.range_diff_image_subset Set.range_diff_image_subset theorem range_diff_image {f : α → β} (H : Injective f) (s : Set α) : range f \ f '' s = f '' sᶜ := (Subset.antisymm (range_diff_image_subset f s)) fun _ ⟨_, hx, hy⟩ => hy ▸ ⟨mem_range_self _, fun ⟨_, hx', Eq⟩ => hx <| H Eq ▸ hx'⟩ #align set.range_diff_image Set.range_diff_image @[simp] theorem range_inclusion (h : s ⊆ t) : range (inclusion h) = { x : t | (x : α) ∈ s } := by ext ⟨x, hx⟩ -- Porting note: `simp [inclusion]` doesn't solve goal apply Iff.intro · rw [mem_range] rintro ⟨a, ha⟩ rw [inclusion, Subtype.mk.injEq] at ha rw [mem_setOf, Subtype.coe_mk, ← ha] exact Subtype.coe_prop _ · rw [mem_setOf, Subtype.coe_mk, mem_range] intro hx' use ⟨x, hx'⟩ trivial -- simp_rw [inclusion, mem_range, Subtype.mk_eq_mk] -- rw [SetCoe.exists, Subtype.coe_mk, exists_prop, exists_eq_right, mem_set_of, Subtype.coe_mk] #align set.range_inclusion Set.range_inclusion /-- We can use the axiom of choice to pick a preimage for every element of `range f`. -/ noncomputable def rangeSplitting (f : α → β) : range f → α := fun x => x.2.choose #align set.range_splitting Set.rangeSplitting -- This can not be a `@[simp]` lemma because the head of the left hand side is a variable. theorem apply_rangeSplitting (f : α → β) (x : range f) : f (rangeSplitting f x) = x := x.2.choose_spec #align set.apply_range_splitting Set.apply_rangeSplitting @[simp] theorem comp_rangeSplitting (f : α → β) : f ∘ rangeSplitting f = (↑) := by ext simp only [Function.comp_apply] apply apply_rangeSplitting #align set.comp_range_splitting Set.comp_rangeSplitting -- When `f` is injective, see also `Equiv.ofInjective`. theorem leftInverse_rangeSplitting (f : α → β) : LeftInverse (rangeFactorization f) (rangeSplitting f) := fun x => by apply Subtype.ext -- Porting note: why doesn't `ext` find this lemma? simp only [rangeFactorization_coe] apply apply_rangeSplitting #align set.left_inverse_range_splitting Set.leftInverse_rangeSplitting theorem rangeSplitting_injective (f : α → β) : Injective (rangeSplitting f) := (leftInverse_rangeSplitting f).injective #align set.range_splitting_injective Set.rangeSplitting_injective theorem rightInverse_rangeSplitting {f : α → β} (h : Injective f) : RightInverse (rangeFactorization f) (rangeSplitting f) := (leftInverse_rangeSplitting f).rightInverse_of_injective fun _ _ hxy => h <| Subtype.ext_iff.1 hxy #align set.right_inverse_range_splitting Set.rightInverse_rangeSplitting theorem preimage_rangeSplitting {f : α → β} (hf : Injective f) : preimage (rangeSplitting f) = image (rangeFactorization f) := (image_eq_preimage_of_inverse (rightInverse_rangeSplitting hf) (leftInverse_rangeSplitting f)).symm #align set.preimage_range_splitting Set.preimage_rangeSplitting theorem isCompl_range_some_none (α : Type*) : IsCompl (range (some : α → Option α)) {none} := IsCompl.of_le (fun _ ⟨⟨_, ha⟩, (hn : _ = none)⟩ => Option.some_ne_none _ (ha.trans hn)) fun x _ => Option.casesOn x (Or.inr rfl) fun _ => Or.inl <| mem_range_self _ #align set.is_compl_range_some_none Set.isCompl_range_some_none @[simp] theorem compl_range_some (α : Type*) : (range (some : α → Option α))ᶜ = {none} := (isCompl_range_some_none α).compl_eq #align set.compl_range_some Set.compl_range_some @[simp] theorem range_some_inter_none (α : Type*) : range (some : α → Option α) ∩ {none} = ∅ := (isCompl_range_some_none α).inf_eq_bot #align set.range_some_inter_none Set.range_some_inter_none -- Porting note: -- @[simp] `simp` can prove this theorem range_some_union_none (α : Type*) : range (some : α → Option α) ∪ {none} = univ := (isCompl_range_some_none α).sup_eq_top #align set.range_some_union_none Set.range_some_union_none @[simp] theorem insert_none_range_some (α : Type*) : insert none (range (some : α → Option α)) = univ := (isCompl_range_some_none α).symm.sup_eq_top #align set.insert_none_range_some Set.insert_none_range_some end Range section Subsingleton variable {s : Set α} /-- The image of a subsingleton is a subsingleton. -/ theorem Subsingleton.image (hs : s.Subsingleton) (f : α → β) : (f '' s).Subsingleton := fun _ ⟨_, hx, Hx⟩ _ ⟨_, hy, Hy⟩ => Hx ▸ Hy ▸ congr_arg f (hs hx hy) #align set.subsingleton.image Set.Subsingleton.image /-- The preimage of a subsingleton under an injective map is a subsingleton. -/ theorem Subsingleton.preimage {s : Set β} (hs : s.Subsingleton) {f : α → β} (hf : Function.Injective f) : (f ⁻¹' s).Subsingleton := fun _ ha _ hb => hf <| hs ha hb #align set.subsingleton.preimage Set.Subsingleton.preimage /-- If the image of a set under an injective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_image {f : α → β} (hf : Function.Injective f) (s : Set α) (hs : (f '' s).Subsingleton) : s.Subsingleton := (hs.preimage hf).anti <| subset_preimage_image _ _ #align set.subsingleton_of_image Set.subsingleton_of_image /-- If the preimage of a set under a surjective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_preimage {f : α → β} (hf : Function.Surjective f) (s : Set β) (hs : (f ⁻¹' s).Subsingleton) : s.Subsingleton := fun fx hx fy hy => by rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact congr_arg f (hs hx hy) #align set.subsingleton_of_preimage Set.subsingleton_of_preimage theorem subsingleton_range {α : Sort*} [Subsingleton α] (f : α → β) : (range f).Subsingleton := forall_range_iff.2 fun x => forall_range_iff.2 fun y => congr_arg f (Subsingleton.elim x y) #align set.subsingleton_range Set.subsingleton_range /-- The preimage of a nontrivial set under a surjective map is nontrivial. -/ theorem Nontrivial.preimage {s : Set β} (hs : s.Nontrivial) {f : α → β} (hf : Function.Surjective f) : (f ⁻¹' s).Nontrivial := by rcases hs with ⟨fx, hx, fy, hy, hxy⟩ rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial.preimage Set.Nontrivial.preimage /-- The image of a nontrivial set under an injective map is nontrivial. -/ theorem Nontrivial.image (hs : s.Nontrivial) {f : α → β} (hf : Function.Injective f) : (f '' s).Nontrivial := let ⟨x, hx, y, hy, hxy⟩ := hs ⟨f x, mem_image_of_mem f hx, f y, mem_image_of_mem f hy, hf.ne hxy⟩ #align set.nontrivial.image Set.Nontrivial.image /-- If the image of a set is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_image (f : α → β) (s : Set α) (hs : (f '' s).Nontrivial) : s.Nontrivial := let ⟨_, ⟨x, hx, rfl⟩, _, ⟨y, hy, rfl⟩, hxy⟩ := hs ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial_of_image Set.nontrivial_of_image /-- If the preimage of a set under an injective map is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_preimage {f : α → β} (hf : Function.Injective f) (s : Set β) (hs : (f ⁻¹' s).Nontrivial) : s.Nontrivial := (hs.image hf).mono <| image_preimage_subset _ _ #align set.nontrivial_of_preimage Set.nontrivial_of_preimage end Subsingleton end Set namespace Function variable {ι : Sort*} {f : α → β} open Set theorem Surjective.preimage_injective (hf : Surjective f) : Injective (preimage f) := fun _ _ => (preimage_eq_preimage hf).1 #align function.surjective.preimage_injective Function.Surjective.preimage_injective theorem Injective.preimage_image (hf : Injective f) (s : Set α) : f ⁻¹' (f '' s) = s := preimage_image_eq s hf #align function.injective.preimage_image Function.Injective.preimage_image theorem Injective.preimage_surjective (hf : Injective f) : Surjective (preimage f) := by intro s use f '' s rw [hf.preimage_image] #align function.injective.preimage_surjective Function.Injective.preimage_surjective theorem Injective.subsingleton_image_iff (hf : Injective f) {s : Set α} : (f '' s).Subsingleton ↔ s.Subsingleton := ⟨subsingleton_of_image hf s, fun h => h.image f⟩ #align function.injective.subsingleton_image_iff Function.Injective.subsingleton_image_iff theorem Surjective.image_preimage (hf : Surjective f) (s : Set β) : f '' (f ⁻¹' s) = s := image_preimage_eq s hf #align function.surjective.image_preimage Function.Surjective.image_preimage theorem Surjective.image_surjective (hf : Surjective f) : Surjective (image f) := by intro s use f ⁻¹' s rw [hf.image_preimage] #align function.surjective.image_surjective Function.Surjective.image_surjective @[simp] theorem Surjective.nonempty_preimage (hf : Surjective f) {s : Set β} : (f ⁻¹' s).Nonempty ↔ s.Nonempty := by rw [← nonempty_image_iff, hf.image_preimage] #align function.surjective.nonempty_preimage Function.Surjective.nonempty_preimage theorem Injective.image_injective (hf : Injective f) : Injective (image f) := by intro s t h rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, h] #align function.injective.image_injective Function.Injective.image_injective theorem Surjective.preimage_subset_preimage_iff {s t : Set β} (hf : Surjective f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by apply Set.preimage_subset_preimage_iff rw [hf.range_eq] apply subset_univ #align function.surjective.preimage_subset_preimage_iff Function.Surjective.preimage_subset_preimage_iff theorem Surjective.range_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) : range (g ∘ f) = range g := ext fun y => (@Surjective.exists _ _ _ hf fun x => g x = y).symm #align function.surjective.range_comp Function.Surjective.range_comp theorem Injective.mem_range_iff_exists_unique (hf : Injective f) {b : β} : b ∈ range f ↔ ∃! a, f a = b := ⟨fun ⟨a, h⟩ => ⟨a, h, fun _ ha => hf (ha.trans h.symm)⟩, ExistsUnique.exists⟩ #align function.injective.mem_range_iff_exists_unique Function.Injective.mem_range_iff_exists_unique theorem Injective.exists_unique_of_mem_range (hf : Injective f) {b : β} (hb : b ∈ range f) : ∃! a, f a = b := hf.mem_range_iff_exists_unique.mp hb #align function.injective.exists_unique_of_mem_range Function.Injective.exists_unique_of_mem_range theorem Injective.compl_image_eq (hf : Injective f) (s : Set α) : (f '' s)ᶜ = f '' sᶜ ∪ (range f)ᶜ := by ext y rcases em (y ∈ range f) with (⟨x, rfl⟩ | hx) · simp [hf.eq_iff] · rw [mem_range, not_exists] at hx simp [hx] #align function.injective.compl_image_eq Function.Injective.compl_image_eq theorem LeftInverse.image_image {g : β → α} (h : LeftInverse g f) (s : Set α) : g '' (f '' s) = s := by rw [← image_comp, h.comp_eq_id, image_id] #align function.left_inverse.image_image Function.LeftInverse.image_image theorem LeftInverse.preimage_preimage {g : β → α} (h : LeftInverse g f) (s : Set α) : f ⁻¹' (g ⁻¹' s) = s := by rw [← preimage_comp, h.comp_eq_id, preimage_id] #align function.left_inverse.preimage_preimage Function.LeftInverse.preimage_preimage protected theorem Involutive.preimage {f : α → α} (hf : Involutive f) : Involutive (preimage f) := hf.rightInverse.preimage_preimage #align function.involutive.preimage Function.Involutive.preimage end Function namespace EquivLike variable {E : Type*} [EquivLike E ι ι'] @[simp] lemma range_comp (f : ι' → α) (e : E) : range (f ∘ e) = range f := (EquivLike.surjective _).range_comp _ #align equiv_like.range_comp EquivLike.range_comp end EquivLike /-! ### Image and preimage on subtypes -/ namespace Subtype variable {α : Type*} theorem coe_image {p : α → Prop} {s : Set (Subtype p)} : (↑) '' s = { x | ∃ h : p x, (⟨x, h⟩ : Subtype p) ∈ s } := Set.ext fun a => ⟨fun ⟨⟨_, ha'⟩, in_s, h_eq⟩ => h_eq ▸ ⟨ha', in_s⟩, fun ⟨ha, in_s⟩ => ⟨⟨a, ha⟩, in_s, rfl⟩⟩ #align subtype.coe_image Subtype.coe_image @[simp] theorem coe_image_of_subset {s t : Set α} (h : t ⊆ s) : (↑) '' { x : ↥s | ↑x ∈ t } = t := by ext x rw [mem_image] exact ⟨fun ⟨_, hx', hx⟩ => hx ▸ hx', fun hx => ⟨⟨x, h hx⟩, hx, rfl⟩⟩ #align subtype.coe_image_of_subset Subtype.coe_image_of_subset theorem range_coe {s : Set α} : range ((↑) : s → α) = s := by rw [← image_univ] simp [-image_univ, coe_image] #align subtype.range_coe Subtype.range_coe /-- A variant of `range_coe`. Try to use `range_coe` if possible. This version is useful when defining a new type that is defined as the subtype of something. In that case, the coercion doesn't fire anymore. -/ theorem range_val {s : Set α} : range (Subtype.val : s → α) = s := range_coe #align subtype.range_val Subtype.range_val /-- We make this the simp lemma instead of `range_coe`. The reason is that if we write for `s : Set α` the function `(↑) : s → α`, then the inferred implicit arguments of `(↑)` are `↑α (fun x ↦ x ∈ s)`. -/ @[simp] theorem range_coe_subtype {p : α → Prop} : range ((↑) : Subtype p → α) = { x | p x } := range_coe #align subtype.range_coe_subtype Subtype.range_coe_subtype @[simp] theorem coe_preimage_self (s : Set α) : ((↑) : s → α) ⁻¹' s = univ := by rw [← preimage_range, range_coe] #align subtype.coe_preimage_self Subtype.coe_preimage_self theorem range_val_subtype {p : α → Prop} : range (Subtype.val : Subtype p → α) = { x | p x } := range_coe #align subtype.range_val_subtype Subtype.range_val_subtype theorem coe_image_subset (s : Set α) (t : Set s) : ((↑) : s → α) '' t ⊆ s := fun x ⟨y, _, yvaleq⟩ => by rw [← yvaleq]; exact y.property #align subtype.coe_image_subset Subtype.coe_image_subset theorem coe_image_univ (s : Set α) : ((↑) : s → α) '' Set.univ = s := image_univ.trans range_coe #align subtype.coe_image_univ Subtype.coe_image_univ @[simp] theorem image_preimage_coe (s t : Set α) : ((↑) : s → α) '' (((↑) : s → α) ⁻¹' t) = t ∩ s := image_preimage_eq_inter_range.trans <| congr_arg _ range_coe #align subtype.image_preimage_coe Subtype.image_preimage_coe theorem image_preimage_val (s t : Set α) : (Subtype.val : s → α) '' (Subtype.val ⁻¹' t) = t ∩ s := image_preimage_coe s t #align subtype.image_preimage_val Subtype.image_preimage_val theorem preimage_coe_eq_preimage_coe_iff {s t u : Set α} : ((↑) : s → α) ⁻¹' t = ((↑) : s → α) ⁻¹' u ↔ t ∩ s = u ∩ s := by rw [← image_preimage_coe, ← image_preimage_coe, coe_injective.image_injective.eq_iff] #align subtype.preimage_coe_eq_preimage_coe_iff Subtype.preimage_coe_eq_preimage_coe_iff -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_inter_self (s t : Set α) : ((↑) : s → α) ⁻¹' (t ∩ s) = ((↑) : s → α) ⁻¹' t := by rw [preimage_coe_eq_preimage_coe_iff, inter_assoc, inter_self] #align subtype.preimage_coe_inter_self Subtype.preimage_coe_inter_self theorem preimage_val_eq_preimage_val_iff (s t u : Set α) : (Subtype.val : s → α) ⁻¹' t = Subtype.val ⁻¹' u ↔ t ∩ s = u ∩ s := preimage_coe_eq_preimage_coe_iff #align subtype.preimage_val_eq_preimage_val_iff Subtype.preimage_val_eq_preimage_val_iff theorem exists_set_subtype {t : Set α} (p : Set α → Prop) : (∃ s : Set t, p (((↑) : t → α) '' s)) ↔ ∃ s : Set α, s ⊆ t ∧ p s := by rw [← exists_subset_range_and_iff, range_coe] #align subtype.exists_set_subtype Subtype.exists_set_subtype theorem forall_set_subtype {t : Set α} (p : Set α → Prop) : (∀ s : Set t, p (((↑) : t → α) '' s)) ↔ ∀ s : Set α, s ⊆ t → p s := by rw [← forall_subset_range_iff, range_coe] theorem preimage_coe_nonempty {s t : Set α} : (((↑) : s → α) ⁻¹' t).Nonempty ↔ (s ∩ t).Nonempty := by rw [inter_comm, ← image_preimage_coe, nonempty_image_iff] #align subtype.preimage_coe_nonempty Subtype.preimage_coe_nonempty theorem preimage_coe_eq_empty {s t : Set α} : ((↑) : s → α) ⁻¹' t = ∅ ↔ s ∩ t = ∅ := by simp [← not_nonempty_iff_eq_empty, preimage_coe_nonempty] #align subtype.preimage_coe_eq_empty Subtype.preimage_coe_eq_empty -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_compl (s : Set α) : ((↑) : s → α) ⁻¹' sᶜ = ∅ := preimage_coe_eq_empty.2 (inter_compl_self s) #align subtype.preimage_coe_compl Subtype.preimage_coe_compl @[simp] theorem preimage_coe_compl' (s : Set α) : (fun x : (sᶜ : Set α) => (x : α)) ⁻¹' s = ∅ := preimage_coe_eq_empty.2 (compl_inter_self s) #align subtype.preimage_coe_compl' Subtype.preimage_coe_compl' end Subtype /-! ### Images and preimages on `Option` -/ open Set namespace Option theorem injective_iff {α β} {f : Option α → β} : Injective f ↔ Injective (f ∘ some) ∧ f none ∉ range (f ∘ some) := by simp only [mem_range, not_exists, (· ∘ ·)] refine' ⟨fun hf => ⟨hf.comp (Option.some_injective _), fun x => hf.ne <| Option.some_ne_none _⟩, _⟩ rintro ⟨h_some, h_none⟩ (_ | a) (_ | b) hab exacts [rfl, (h_none _ hab.symm).elim, (h_none _ hab).elim, congr_arg some (h_some hab)] #align option.injective_iff Option.injective_iff theorem range_eq {α β} (f : Option α → β) : range f = insert (f none) (range (f ∘ some)) := Set.ext fun _ => Option.exists.trans <| eq_comm.or Iff.rfl #align option.range_eq Option.range_eq end Option theorem WithBot.range_eq {α β} (f : WithBot α → β) : range f = insert (f ⊥) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_bot.range_eq WithBot.range_eq theorem WithTop.range_eq {α β} (f : WithTop α → β) : range f = insert (f ⊤) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_top.range_eq WithTop.range_eq namespace Set open Function /-! ### Injectivity and surjectivity lemmas for image and preimage -/ section ImagePreimage variable {α : Type u} {β : Type v} {f : α → β} @[simp] theorem preimage_injective : Injective (preimage f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.preimage_injective⟩ obtain ⟨x, hx⟩ : (f ⁻¹' {y}).Nonempty := by rw [h.nonempty_apply_iff preimage_empty] apply singleton_nonempty exact ⟨x, hx⟩ #align set.preimage_injective Set.preimage_injective @[simp] theorem preimage_surjective : Surjective (preimage f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.preimage_surjective⟩ cases' h {x} with s hs; have := mem_singleton x rwa [← hs, mem_preimage, hx, ← mem_preimage, hs, mem_singleton_iff, eq_comm] at this #align set.preimage_surjective Set.preimage_surjective @[simp] theorem image_surjective : Surjective (image f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.image_surjective⟩ cases' h {y} with s hs have := mem_singleton y; rw [← hs] at this; rcases this with ⟨x, _, hx⟩ exact ⟨x, hx⟩ #align set.image_surjective Set.image_surjective @[simp] theorem image_injective : Injective (image f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.image_injective⟩ rw [← singleton_eq_singleton_iff]; apply h rw [image_singleton, image_singleton, hx] #align set.image_injective Set.image_injective theorem preimage_eq_iff_eq_image {f : α → β} (hf : Bijective f) {s t} : f ⁻¹' s = t ↔ s = f '' t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.preimage_eq_iff_eq_image Set.preimage_eq_iff_eq_image theorem eq_preimage_iff_image_eq {f : α → β} (hf : Bijective f) {s t} : s = f ⁻¹' t ↔ f '' s = t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.eq_preimage_iff_image_eq Set.eq_preimage_iff_image_eq end ImagePreimage end Set /-! ### Disjoint lemmas for image and preimage -/ section Disjoint variable {α β γ : Type*} {f : α → β} {s t : Set α} theorem Disjoint.preimage (f : α → β) {s t : Set β} (h : Disjoint s t) : Disjoint (f ⁻¹' s) (f ⁻¹' t) := disjoint_iff_inf_le.mpr fun _ hx => h.le_bot hx #align disjoint.preimage Disjoint.preimage namespace Set theorem disjoint_image_image {f : β → α} {g : γ → α} {s : Set β} {t : Set γ} (h : ∀ b ∈ s, ∀ c ∈ t, f b ≠ g c) : Disjoint (f '' s) (g '' t) := disjoint_iff_inf_le.mpr <| by rintro a ⟨⟨b, hb, eq⟩, c, hc, rfl⟩; exact h b hb c hc eq #align set.disjoint_image_image Set.disjoint_image_image theorem disjoint_image_of_injective (hf : Injective f) {s t : Set α} (hd : Disjoint s t) : Disjoint (f '' s) (f '' t) := disjoint_image_image fun _ hx _ hy => hf.ne fun H => Set.disjoint_iff.1 hd ⟨hx, H.symm ▸ hy⟩ #align set.disjoint_image_of_injective Set.disjoint_image_of_injective theorem _root_.Disjoint.of_image (h : Disjoint (f '' s) (f '' t)) : Disjoint s t := disjoint_iff_inf_le.mpr fun _ hx => disjoint_left.1 h (mem_image_of_mem _ hx.1) (mem_image_of_mem _ hx.2) #align disjoint.of_image Disjoint.of_image @[simp] theorem disjoint_image_iff (hf : Injective f) : Disjoint (f '' s) (f '' t) ↔ Disjoint s t := ⟨Disjoint.of_image, disjoint_image_of_injective hf⟩ #align set.disjoint_image_iff Set.disjoint_image_iff theorem _root_.Disjoint.of_preimage (hf : Surjective f) {s t : Set β} (h : Disjoint (f ⁻¹' s) (f ⁻¹' t)) : Disjoint s t := by rw [disjoint_iff_inter_eq_empty, ← image_preimage_eq (_ ∩ _) hf, preimage_inter, h.inter_eq, image_empty] #align disjoint.of_preimage Disjoint.of_preimage @[simp] theorem disjoint_preimage_iff (hf : Surjective f) {s t : Set β} : Disjoint (f ⁻¹' s) (f ⁻¹' t) ↔ Disjoint s t := ⟨Disjoint.of_preimage hf, Disjoint.preimage _⟩ #align set.disjoint_preimage_iff Set.disjoint_preimage_iff theorem preimage_eq_empty {s : Set β} (h : Disjoint s (range f)) : f ⁻¹' s = ∅ := by simpa using h.preimage f #align set.preimage_eq_empty Set.preimage_eq_empty theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢ intro y hy x hx
rw [← hx] at hy
theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢ intro y hy x hx
Mathlib.Data.Set.Image.1653_0.IJFiTzmYGOCpPSd
theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f)
Mathlib_Data_Set_Image
α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β s✝ t : Set α s : Set β h : ∀ (x : α), f x ∉ s y : β x : α hy : f x ∈ s hx : f x = y ⊢ False
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h by_cases hs : a ∈ t · right refine' ⟨t \ {a}, _, _⟩ · rw [diff_singleton_subset_iff] assumption · rw [insert_diff_singleton, insert_eq_of_mem hs] · left exact (subset_insert_iff_of_not_mem hs).mp h · rintro (h | ⟨s', h₁, rfl⟩) · exact subset_trans h (subset_insert a s) · exact insert_subset_insert h₁ #align set.powerset_insert Set.powerset_insert /-! ### Lemmas about range of a function. -/ section Range variable {f : ι → α} {s t : Set α} /-- Range of a function. This function is more flexible than `f '' univ`, as the image requires that the domain is in Type and not an arbitrary Sort. -/ def range (f : ι → α) : Set α := { x | ∃ y, f y = x } #align set.range Set.range @[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := Iff.rfl #align set.mem_range Set.mem_range -- Porting note -- @[simp] `simp` can prove this @[mfld_simps] theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩ #align set.mem_range_self Set.mem_range_self theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ ∀ i, p (f i) := by simp #align set.forall_range_iff Set.forall_range_iff theorem forall_subtype_range_iff {p : range f → Prop} : (∀ a : range f, p a) ↔ ∀ i, p ⟨f i, mem_range_self _⟩ := ⟨fun H i => H _, fun H ⟨y, i, hi⟩ => by subst hi apply H⟩ #align set.forall_subtype_range_iff Set.forall_subtype_range_iff theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ ∃ i, p (f i) := by simp #align set.exists_range_iff Set.exists_range_iff theorem exists_range_iff' {p : α → Prop} : (∃ a, a ∈ range f ∧ p a) ↔ ∃ i, p (f i) := by simpa only [exists_prop] using exists_range_iff #align set.exists_range_iff' Set.exists_range_iff' theorem exists_subtype_range_iff {p : range f → Prop} : (∃ a : range f, p a) ↔ ∃ i, p ⟨f i, mem_range_self _⟩ := ⟨fun ⟨⟨a, i, hi⟩, ha⟩ => by subst a exact ⟨i, ha⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩ #align set.exists_subtype_range_iff Set.exists_subtype_range_iff theorem range_iff_surjective : range f = univ ↔ Surjective f := eq_univ_iff_forall #align set.range_iff_surjective Set.range_iff_surjective -- Porting note: Lean4 unfolds `Surjective` here, ruining dot notation alias ⟨_, _root_.Function.Surjective.range_eq⟩ := range_iff_surjective #align function.surjective.range_eq Function.Surjective.range_eq @[simp] theorem image_univ {f : α → β} : f '' univ = range f := by ext simp [image, range] #align set.image_univ Set.image_univ theorem image_subset_range (f : α → β) (s) : f '' s ⊆ range f := by rw [← image_univ]; exact image_subset _ (subset_univ _) #align set.image_subset_range Set.image_subset_range theorem mem_range_of_mem_image (f : α → β) (s) {x : β} (h : x ∈ f '' s) : x ∈ range f := image_subset_range f s h #align set.mem_range_of_mem_image Set.mem_range_of_mem_image theorem _root_.Nat.mem_range_succ (i : ℕ) : i ∈ range Nat.succ ↔ 0 < i := ⟨by rintro ⟨n, rfl⟩ exact Nat.succ_pos n, fun h => ⟨_, Nat.succ_pred_eq_of_pos h⟩⟩ #align nat.mem_range_succ Nat.mem_range_succ theorem Nonempty.preimage' {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : s ⊆ range f) : (f ⁻¹' s).Nonempty := let ⟨_, hy⟩ := hs let ⟨x, hx⟩ := hf hy ⟨x, Set.mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage' Set.Nonempty.preimage' theorem range_comp (g : α → β) (f : ι → α) : range (g ∘ f) = g '' range f := Subset.antisymm (forall_range_iff.mpr fun _ => mem_image_of_mem g (mem_range_self _)) (ball_image_iff.mpr <| forall_range_iff.mpr mem_range_self) #align set.range_comp Set.range_comp theorem range_subset_iff : range f ⊆ s ↔ ∀ y, f y ∈ s := forall_range_iff #align set.range_subset_iff Set.range_subset_iff theorem range_subset_range_iff_exists_comp {f : α → γ} {g : β → γ} : range f ⊆ range g ↔ ∃ h : α → β, f = g ∘ h := by simp only [range_subset_iff, mem_range, Classical.skolem, Function.funext_iff, (· ∘ ·), eq_comm] theorem range_eq_iff (f : α → β) (s : Set β) : range f = s ↔ (∀ a, f a ∈ s) ∧ ∀ b ∈ s, ∃ a, f a = b := by rw [← range_subset_iff] exact le_antisymm_iff #align set.range_eq_iff Set.range_eq_iff theorem range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g := by rw [range_comp]; apply image_subset_range #align set.range_comp_subset_range Set.range_comp_subset_range theorem range_nonempty_iff_nonempty : (range f).Nonempty ↔ Nonempty ι := ⟨fun ⟨_, x, _⟩ => ⟨x⟩, fun ⟨x⟩ => ⟨f x, mem_range_self x⟩⟩ #align set.range_nonempty_iff_nonempty Set.range_nonempty_iff_nonempty theorem range_nonempty [h : Nonempty ι] (f : ι → α) : (range f).Nonempty := range_nonempty_iff_nonempty.2 h #align set.range_nonempty Set.range_nonempty @[simp] theorem range_eq_empty_iff {f : ι → α} : range f = ∅ ↔ IsEmpty ι := by rw [← not_nonempty_iff, ← range_nonempty_iff_nonempty, not_nonempty_iff_eq_empty] #align set.range_eq_empty_iff Set.range_eq_empty_iff theorem range_eq_empty [IsEmpty ι] (f : ι → α) : range f = ∅ := range_eq_empty_iff.2 ‹_› #align set.range_eq_empty Set.range_eq_empty instance instNonemptyRange [Nonempty ι] (f : ι → α) : Nonempty (range f) := (range_nonempty f).to_subtype @[simp] theorem image_union_image_compl_eq_range (f : α → β) : f '' s ∪ f '' sᶜ = range f := by rw [← image_union, ← image_univ, ← union_compl_self] #align set.image_union_image_compl_eq_range Set.image_union_image_compl_eq_range theorem insert_image_compl_eq_range (f : α → β) (x : α) : insert (f x) (f '' {x}ᶜ) = range f := by rw [← image_insert_eq, insert_eq, union_compl_self, image_univ] #align set.insert_image_compl_eq_range Set.insert_image_compl_eq_range theorem image_preimage_eq_inter_range {f : α → β} {t : Set β} : f '' (f ⁻¹' t) = t ∩ range f := ext fun x => ⟨fun ⟨x, hx, HEq⟩ => HEq ▸ ⟨hx, mem_range_self _⟩, fun ⟨hx, ⟨y, h_eq⟩⟩ => h_eq ▸ mem_image_of_mem f <| show y ∈ f ⁻¹' t by rw [preimage, mem_setOf, h_eq]; exact hx⟩ #align set.image_preimage_eq_inter_range Set.image_preimage_eq_inter_range theorem image_preimage_eq_of_subset {f : α → β} {s : Set β} (hs : s ⊆ range f) : f '' (f ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs] #align set.image_preimage_eq_of_subset Set.image_preimage_eq_of_subset theorem image_preimage_eq_iff {f : α → β} {s : Set β} : f '' (f ⁻¹' s) = s ↔ s ⊆ range f := ⟨by intro h rw [← h] apply image_subset_range, image_preimage_eq_of_subset⟩ #align set.image_preimage_eq_iff Set.image_preimage_eq_iff theorem subset_range_iff_exists_image_eq {f : α → β} {s : Set β} : s ⊆ range f ↔ ∃ t, f '' t = s := ⟨fun h => ⟨_, image_preimage_eq_iff.2 h⟩, fun ⟨_, ht⟩ => ht ▸ image_subset_range _ _⟩ #align set.subset_range_iff_exists_image_eq Set.subset_range_iff_exists_image_eq theorem range_image (f : α → β) : range (image f) = 𝒫 range f := ext fun _ => subset_range_iff_exists_image_eq.symm #align set.range_image Set.range_image @[simp] theorem exists_subset_range_and_iff {f : α → β} {p : Set β → Prop} : (∃ s, s ⊆ range f ∧ p s) ↔ ∃ s, p (f '' s) := by rw [← exists_range_iff, range_image]; rfl #align set.exists_subset_range_and_iff Set.exists_subset_range_and_iff theorem exists_subset_range_iff {f : α → β} {p : Set β → Prop} : (∃ (s : _) (_ : s ⊆ range f), p s) ↔ ∃ s, p (f '' s) := by simp #align set.exists_subset_range_iff Set.exists_subset_range_iff theorem forall_subset_range_iff {f : α → β} {p : Set β → Prop} : (∀ s, s ⊆ range f → p s) ↔ ∀ s, p (f '' s) := by rw [← forall_range_iff, range_image]; rfl theorem preimage_subset_preimage_iff {s t : Set α} {f : β → α} (hs : s ⊆ range f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by constructor · intro h x hx rcases hs hx with ⟨y, rfl⟩ exact h hx intro h x; apply h #align set.preimage_subset_preimage_iff Set.preimage_subset_preimage_iff theorem preimage_eq_preimage' {s t : Set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := by constructor · intro h apply Subset.antisymm · rw [← preimage_subset_preimage_iff hs, h] · rw [← preimage_subset_preimage_iff ht, h] rintro rfl; rfl #align set.preimage_eq_preimage' Set.preimage_eq_preimage' -- Porting note: -- @[simp] `simp` can prove this theorem preimage_inter_range {f : α → β} {s : Set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s := Set.ext fun x => and_iff_left ⟨x, rfl⟩ #align set.preimage_inter_range Set.preimage_inter_range -- Porting note: -- @[simp] `simp` can prove this theorem preimage_range_inter {f : α → β} {s : Set β} : f ⁻¹' (range f ∩ s) = f ⁻¹' s := by rw [inter_comm, preimage_inter_range] #align set.preimage_range_inter Set.preimage_range_inter theorem preimage_image_preimage {f : α → β} {s : Set β} : f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s := by rw [image_preimage_eq_inter_range, preimage_inter_range] #align set.preimage_image_preimage Set.preimage_image_preimage @[simp, mfld_simps] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id #align set.range_id Set.range_id @[simp, mfld_simps] theorem range_id' : (range fun x : α => x) = univ := range_id #align set.range_id' Set.range_id' @[simp] theorem _root_.Prod.range_fst [Nonempty β] : range (Prod.fst : α × β → α) = univ := Prod.fst_surjective.range_eq #align prod.range_fst Prod.range_fst @[simp] theorem _root_.Prod.range_snd [Nonempty α] : range (Prod.snd : α × β → β) = univ := Prod.snd_surjective.range_eq #align prod.range_snd Prod.range_snd @[simp] theorem range_eval {α : ι → Sort _} [∀ i, Nonempty (α i)] (i : ι) : range (eval i : (∀ i, α i) → α i) = univ := (surjective_eval i).range_eq #align set.range_eval Set.range_eval theorem range_inl : range (@Sum.inl α β) = {x | Sum.isLeft x} := by ext (_|_) <;> simp #align set.range_inl Set.range_inl theorem range_inr : range (@Sum.inr α β) = {x | Sum.isRight x} := by ext (_|_) <;> simp #align set.range_inr Set.range_inr theorem isCompl_range_inl_range_inr : IsCompl (range <| @Sum.inl α β) (range Sum.inr) := IsCompl.of_le (by rintro y ⟨⟨x₁, rfl⟩, ⟨x₂, h⟩⟩ exact Sum.noConfusion h) (by rintro (x | y) - <;> [left; right] <;> exact mem_range_self _) #align set.is_compl_range_inl_range_inr Set.isCompl_range_inl_range_inr @[simp] theorem range_inl_union_range_inr : range (Sum.inl : α → Sum α β) ∪ range Sum.inr = univ := isCompl_range_inl_range_inr.sup_eq_top #align set.range_inl_union_range_inr Set.range_inl_union_range_inr @[simp] theorem range_inl_inter_range_inr : range (Sum.inl : α → Sum α β) ∩ range Sum.inr = ∅ := isCompl_range_inl_range_inr.inf_eq_bot #align set.range_inl_inter_range_inr Set.range_inl_inter_range_inr @[simp] theorem range_inr_union_range_inl : range (Sum.inr : β → Sum α β) ∪ range Sum.inl = univ := isCompl_range_inl_range_inr.symm.sup_eq_top #align set.range_inr_union_range_inl Set.range_inr_union_range_inl @[simp] theorem range_inr_inter_range_inl : range (Sum.inr : β → Sum α β) ∩ range Sum.inl = ∅ := isCompl_range_inl_range_inr.symm.inf_eq_bot #align set.range_inr_inter_range_inl Set.range_inr_inter_range_inl @[simp] theorem preimage_inl_image_inr (s : Set β) : Sum.inl ⁻¹' (@Sum.inr α β '' s) = ∅ := by ext simp #align set.preimage_inl_image_inr Set.preimage_inl_image_inr @[simp] theorem preimage_inr_image_inl (s : Set α) : Sum.inr ⁻¹' (@Sum.inl α β '' s) = ∅ := by ext simp #align set.preimage_inr_image_inl Set.preimage_inr_image_inl @[simp] theorem preimage_inl_range_inr : Sum.inl ⁻¹' range (Sum.inr : β → Sum α β) = ∅ := by rw [← image_univ, preimage_inl_image_inr] #align set.preimage_inl_range_inr Set.preimage_inl_range_inr @[simp] theorem preimage_inr_range_inl : Sum.inr ⁻¹' range (Sum.inl : α → Sum α β) = ∅ := by rw [← image_univ, preimage_inr_image_inl] #align set.preimage_inr_range_inl Set.preimage_inr_range_inl @[simp] theorem compl_range_inl : (range (Sum.inl : α → Sum α β))ᶜ = range (Sum.inr : β → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr #align set.compl_range_inl Set.compl_range_inl @[simp] theorem compl_range_inr : (range (Sum.inr : β → Sum α β))ᶜ = range (Sum.inl : α → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr.symm #align set.compl_range_inr Set.compl_range_inr theorem image_preimage_inl_union_image_preimage_inr (s : Set (Sum α β)) : Sum.inl '' (Sum.inl ⁻¹' s) ∪ Sum.inr '' (Sum.inr ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, ← inter_distrib_left, range_inl_union_range_inr, inter_univ] #align set.image_preimage_inl_union_image_preimage_inr Set.image_preimage_inl_union_image_preimage_inr @[simp] theorem range_quot_mk (r : α → α → Prop) : range (Quot.mk r) = univ := (surjective_quot_mk r).range_eq #align set.range_quot_mk Set.range_quot_mk @[simp] theorem range_quot_lift {r : ι → ι → Prop} (hf : ∀ x y, r x y → f x = f y) : range (Quot.lift f hf) = range f := ext fun _ => (surjective_quot_mk _).exists #align set.range_quot_lift Set.range_quot_lift -- Porting note: the `Setoid α` instance is not being filled in @[simp] theorem range_quotient_mk [sa : Setoid α] : (range (α := Quotient sa) fun x : α => ⟦x⟧) = univ := range_quot_mk _ #align set.range_quotient_mk Set.range_quotient_mk @[simp] theorem range_quotient_lift [s : Setoid ι] (hf) : range (Quotient.lift f hf : Quotient s → α) = range f := range_quot_lift _ #align set.range_quotient_lift Set.range_quotient_lift @[simp] theorem range_quotient_mk' {s : Setoid α} : range (Quotient.mk' : α → Quotient s) = univ := range_quot_mk _ #align set.range_quotient_mk' Set.range_quotient_mk' @[simp] lemma Quotient.range_mk'' {sa : Setoid α} : range (Quotient.mk'' (s₁ := sa)) = univ := range_quotient_mk @[simp] theorem range_quotient_lift_on' {s : Setoid ι} (hf) : (range fun x : Quotient s => Quotient.liftOn' x f hf) = range f := range_quot_lift _ #align set.range_quotient_lift_on' Set.range_quotient_lift_on' instance canLift (c) (p) [CanLift α β c p] : CanLift (Set α) (Set β) (c '' ·) fun s => ∀ x ∈ s, p x where prf _ hs := subset_range_iff_exists_image_eq.mp fun x hx => CanLift.prf _ (hs x hx) #align set.can_lift Set.canLift theorem range_const_subset {c : α} : (range fun _ : ι => c) ⊆ {c} := range_subset_iff.2 fun _ => rfl #align set.range_const_subset Set.range_const_subset @[simp] theorem range_const : ∀ [Nonempty ι] {c : α}, (range fun _ : ι => c) = {c} | ⟨x⟩, _ => (Subset.antisymm range_const_subset) fun _ hy => (mem_singleton_iff.1 hy).symm ▸ mem_range_self x #align set.range_const Set.range_const theorem range_subtype_map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀ x, p x → q (f x)) : range (Subtype.map f h) = (↑) ⁻¹' (f '' { x | p x }) := by ext ⟨x, hx⟩ rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.coe_mk] apply Iff.intro · rintro ⟨a, b, hab⟩ rw [Subtype.map, Subtype.mk.injEq] at hab use a trivial · rintro ⟨a, b, hab⟩ use a use b rw [Subtype.map, Subtype.mk.injEq] exact hab -- Porting note: `simp_rw` fails here -- simp_rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.map, Subtype.coe_mk, -- mem_set_of, exists_prop] #align set.range_subtype_map Set.range_subtype_map theorem image_swap_eq_preimage_swap : image (@Prod.swap α β) = preimage Prod.swap := image_eq_preimage_of_inverse Prod.swap_leftInverse Prod.swap_rightInverse #align set.image_swap_eq_preimage_swap Set.image_swap_eq_preimage_swap theorem preimage_singleton_nonempty {f : α → β} {y : β} : (f ⁻¹' {y}).Nonempty ↔ y ∈ range f := Iff.rfl #align set.preimage_singleton_nonempty Set.preimage_singleton_nonempty theorem preimage_singleton_eq_empty {f : α → β} {y : β} : f ⁻¹' {y} = ∅ ↔ y ∉ range f := not_nonempty_iff_eq_empty.symm.trans preimage_singleton_nonempty.not #align set.preimage_singleton_eq_empty Set.preimage_singleton_eq_empty theorem range_subset_singleton {f : ι → α} {x : α} : range f ⊆ {x} ↔ f = const ι x := by simp [range_subset_iff, funext_iff, mem_singleton] #align set.range_subset_singleton Set.range_subset_singleton theorem image_compl_preimage {f : α → β} {s : Set β} : f '' (f ⁻¹' s)ᶜ = range f \ s := by rw [compl_eq_univ_diff, image_diff_preimage, image_univ] #align set.image_compl_preimage Set.image_compl_preimage /-- Any map `f : ι → β` factors through a map `rangeFactorization f : ι → range f`. -/ def rangeFactorization (f : ι → β) : ι → range f := fun i => ⟨f i, mem_range_self i⟩ #align set.range_factorization Set.rangeFactorization theorem rangeFactorization_eq {f : ι → β} : Subtype.val ∘ rangeFactorization f = f := funext fun _ => rfl #align set.range_factorization_eq Set.rangeFactorization_eq @[simp] theorem rangeFactorization_coe (f : ι → β) (a : ι) : (rangeFactorization f a : β) = f a := rfl #align set.range_factorization_coe Set.rangeFactorization_coe @[simp] theorem coe_comp_rangeFactorization (f : ι → β) : (↑) ∘ rangeFactorization f = f := rfl #align set.coe_comp_range_factorization Set.coe_comp_rangeFactorization theorem surjective_onto_range : Surjective (rangeFactorization f) := fun ⟨_, ⟨i, rfl⟩⟩ => ⟨i, rfl⟩ #align set.surjective_onto_range Set.surjective_onto_range theorem image_eq_range (f : α → β) (s : Set α) : f '' s = range fun x : s => f x := by ext constructor rintro ⟨x, h1, h2⟩ exact ⟨⟨x, h1⟩, h2⟩ rintro ⟨⟨x, h1⟩, h2⟩ exact ⟨x, h1, h2⟩ #align set.image_eq_range Set.image_eq_range theorem _root_.Sum.range_eq (f : Sum α β → γ) : range f = range (f ∘ Sum.inl) ∪ range (f ∘ Sum.inr) := ext fun _ => Sum.exists #align sum.range_eq Sum.range_eq @[simp] theorem Sum.elim_range (f : α → γ) (g : β → γ) : range (Sum.elim f g) = range f ∪ range g := Sum.range_eq _ #align set.sum.elim_range Set.Sum.elim_range theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g := by by_cases h : p · rw [if_pos h] exact subset_union_left _ _ · rw [if_neg h] exact subset_union_right _ _ #align set.range_ite_subset' Set.range_ite_subset' theorem range_ite_subset {p : α → Prop} [DecidablePred p] {f g : α → β} : (range fun x => if p x then f x else g x) ⊆ range f ∪ range g := by rw [range_subset_iff]; intro x; by_cases h : p x simp only [if_pos h, mem_union, mem_range, exists_apply_eq_apply, true_or] simp [if_neg h, mem_union, mem_range_self] #align set.range_ite_subset Set.range_ite_subset @[simp] theorem preimage_range (f : α → β) : f ⁻¹' range f = univ := eq_univ_of_forall mem_range_self #align set.preimage_range Set.preimage_range /-- The range of a function from a `Unique` type contains just the function applied to its single value. -/ theorem range_unique [h : Unique ι] : range f = {f default} := by ext x rw [mem_range] constructor · rintro ⟨i, hi⟩ rw [h.uniq i] at hi exact hi ▸ mem_singleton _ · exact fun h => ⟨default, h.symm⟩ #align set.range_unique Set.range_unique theorem range_diff_image_subset (f : α → β) (s : Set α) : range f \ f '' s ⊆ f '' sᶜ := fun _ ⟨⟨x, h₁⟩, h₂⟩ => ⟨x, fun h => h₂ ⟨x, h, h₁⟩, h₁⟩ #align set.range_diff_image_subset Set.range_diff_image_subset theorem range_diff_image {f : α → β} (H : Injective f) (s : Set α) : range f \ f '' s = f '' sᶜ := (Subset.antisymm (range_diff_image_subset f s)) fun _ ⟨_, hx, hy⟩ => hy ▸ ⟨mem_range_self _, fun ⟨_, hx', Eq⟩ => hx <| H Eq ▸ hx'⟩ #align set.range_diff_image Set.range_diff_image @[simp] theorem range_inclusion (h : s ⊆ t) : range (inclusion h) = { x : t | (x : α) ∈ s } := by ext ⟨x, hx⟩ -- Porting note: `simp [inclusion]` doesn't solve goal apply Iff.intro · rw [mem_range] rintro ⟨a, ha⟩ rw [inclusion, Subtype.mk.injEq] at ha rw [mem_setOf, Subtype.coe_mk, ← ha] exact Subtype.coe_prop _ · rw [mem_setOf, Subtype.coe_mk, mem_range] intro hx' use ⟨x, hx'⟩ trivial -- simp_rw [inclusion, mem_range, Subtype.mk_eq_mk] -- rw [SetCoe.exists, Subtype.coe_mk, exists_prop, exists_eq_right, mem_set_of, Subtype.coe_mk] #align set.range_inclusion Set.range_inclusion /-- We can use the axiom of choice to pick a preimage for every element of `range f`. -/ noncomputable def rangeSplitting (f : α → β) : range f → α := fun x => x.2.choose #align set.range_splitting Set.rangeSplitting -- This can not be a `@[simp]` lemma because the head of the left hand side is a variable. theorem apply_rangeSplitting (f : α → β) (x : range f) : f (rangeSplitting f x) = x := x.2.choose_spec #align set.apply_range_splitting Set.apply_rangeSplitting @[simp] theorem comp_rangeSplitting (f : α → β) : f ∘ rangeSplitting f = (↑) := by ext simp only [Function.comp_apply] apply apply_rangeSplitting #align set.comp_range_splitting Set.comp_rangeSplitting -- When `f` is injective, see also `Equiv.ofInjective`. theorem leftInverse_rangeSplitting (f : α → β) : LeftInverse (rangeFactorization f) (rangeSplitting f) := fun x => by apply Subtype.ext -- Porting note: why doesn't `ext` find this lemma? simp only [rangeFactorization_coe] apply apply_rangeSplitting #align set.left_inverse_range_splitting Set.leftInverse_rangeSplitting theorem rangeSplitting_injective (f : α → β) : Injective (rangeSplitting f) := (leftInverse_rangeSplitting f).injective #align set.range_splitting_injective Set.rangeSplitting_injective theorem rightInverse_rangeSplitting {f : α → β} (h : Injective f) : RightInverse (rangeFactorization f) (rangeSplitting f) := (leftInverse_rangeSplitting f).rightInverse_of_injective fun _ _ hxy => h <| Subtype.ext_iff.1 hxy #align set.right_inverse_range_splitting Set.rightInverse_rangeSplitting theorem preimage_rangeSplitting {f : α → β} (hf : Injective f) : preimage (rangeSplitting f) = image (rangeFactorization f) := (image_eq_preimage_of_inverse (rightInverse_rangeSplitting hf) (leftInverse_rangeSplitting f)).symm #align set.preimage_range_splitting Set.preimage_rangeSplitting theorem isCompl_range_some_none (α : Type*) : IsCompl (range (some : α → Option α)) {none} := IsCompl.of_le (fun _ ⟨⟨_, ha⟩, (hn : _ = none)⟩ => Option.some_ne_none _ (ha.trans hn)) fun x _ => Option.casesOn x (Or.inr rfl) fun _ => Or.inl <| mem_range_self _ #align set.is_compl_range_some_none Set.isCompl_range_some_none @[simp] theorem compl_range_some (α : Type*) : (range (some : α → Option α))ᶜ = {none} := (isCompl_range_some_none α).compl_eq #align set.compl_range_some Set.compl_range_some @[simp] theorem range_some_inter_none (α : Type*) : range (some : α → Option α) ∩ {none} = ∅ := (isCompl_range_some_none α).inf_eq_bot #align set.range_some_inter_none Set.range_some_inter_none -- Porting note: -- @[simp] `simp` can prove this theorem range_some_union_none (α : Type*) : range (some : α → Option α) ∪ {none} = univ := (isCompl_range_some_none α).sup_eq_top #align set.range_some_union_none Set.range_some_union_none @[simp] theorem insert_none_range_some (α : Type*) : insert none (range (some : α → Option α)) = univ := (isCompl_range_some_none α).symm.sup_eq_top #align set.insert_none_range_some Set.insert_none_range_some end Range section Subsingleton variable {s : Set α} /-- The image of a subsingleton is a subsingleton. -/ theorem Subsingleton.image (hs : s.Subsingleton) (f : α → β) : (f '' s).Subsingleton := fun _ ⟨_, hx, Hx⟩ _ ⟨_, hy, Hy⟩ => Hx ▸ Hy ▸ congr_arg f (hs hx hy) #align set.subsingleton.image Set.Subsingleton.image /-- The preimage of a subsingleton under an injective map is a subsingleton. -/ theorem Subsingleton.preimage {s : Set β} (hs : s.Subsingleton) {f : α → β} (hf : Function.Injective f) : (f ⁻¹' s).Subsingleton := fun _ ha _ hb => hf <| hs ha hb #align set.subsingleton.preimage Set.Subsingleton.preimage /-- If the image of a set under an injective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_image {f : α → β} (hf : Function.Injective f) (s : Set α) (hs : (f '' s).Subsingleton) : s.Subsingleton := (hs.preimage hf).anti <| subset_preimage_image _ _ #align set.subsingleton_of_image Set.subsingleton_of_image /-- If the preimage of a set under a surjective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_preimage {f : α → β} (hf : Function.Surjective f) (s : Set β) (hs : (f ⁻¹' s).Subsingleton) : s.Subsingleton := fun fx hx fy hy => by rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact congr_arg f (hs hx hy) #align set.subsingleton_of_preimage Set.subsingleton_of_preimage theorem subsingleton_range {α : Sort*} [Subsingleton α] (f : α → β) : (range f).Subsingleton := forall_range_iff.2 fun x => forall_range_iff.2 fun y => congr_arg f (Subsingleton.elim x y) #align set.subsingleton_range Set.subsingleton_range /-- The preimage of a nontrivial set under a surjective map is nontrivial. -/ theorem Nontrivial.preimage {s : Set β} (hs : s.Nontrivial) {f : α → β} (hf : Function.Surjective f) : (f ⁻¹' s).Nontrivial := by rcases hs with ⟨fx, hx, fy, hy, hxy⟩ rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial.preimage Set.Nontrivial.preimage /-- The image of a nontrivial set under an injective map is nontrivial. -/ theorem Nontrivial.image (hs : s.Nontrivial) {f : α → β} (hf : Function.Injective f) : (f '' s).Nontrivial := let ⟨x, hx, y, hy, hxy⟩ := hs ⟨f x, mem_image_of_mem f hx, f y, mem_image_of_mem f hy, hf.ne hxy⟩ #align set.nontrivial.image Set.Nontrivial.image /-- If the image of a set is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_image (f : α → β) (s : Set α) (hs : (f '' s).Nontrivial) : s.Nontrivial := let ⟨_, ⟨x, hx, rfl⟩, _, ⟨y, hy, rfl⟩, hxy⟩ := hs ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial_of_image Set.nontrivial_of_image /-- If the preimage of a set under an injective map is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_preimage {f : α → β} (hf : Function.Injective f) (s : Set β) (hs : (f ⁻¹' s).Nontrivial) : s.Nontrivial := (hs.image hf).mono <| image_preimage_subset _ _ #align set.nontrivial_of_preimage Set.nontrivial_of_preimage end Subsingleton end Set namespace Function variable {ι : Sort*} {f : α → β} open Set theorem Surjective.preimage_injective (hf : Surjective f) : Injective (preimage f) := fun _ _ => (preimage_eq_preimage hf).1 #align function.surjective.preimage_injective Function.Surjective.preimage_injective theorem Injective.preimage_image (hf : Injective f) (s : Set α) : f ⁻¹' (f '' s) = s := preimage_image_eq s hf #align function.injective.preimage_image Function.Injective.preimage_image theorem Injective.preimage_surjective (hf : Injective f) : Surjective (preimage f) := by intro s use f '' s rw [hf.preimage_image] #align function.injective.preimage_surjective Function.Injective.preimage_surjective theorem Injective.subsingleton_image_iff (hf : Injective f) {s : Set α} : (f '' s).Subsingleton ↔ s.Subsingleton := ⟨subsingleton_of_image hf s, fun h => h.image f⟩ #align function.injective.subsingleton_image_iff Function.Injective.subsingleton_image_iff theorem Surjective.image_preimage (hf : Surjective f) (s : Set β) : f '' (f ⁻¹' s) = s := image_preimage_eq s hf #align function.surjective.image_preimage Function.Surjective.image_preimage theorem Surjective.image_surjective (hf : Surjective f) : Surjective (image f) := by intro s use f ⁻¹' s rw [hf.image_preimage] #align function.surjective.image_surjective Function.Surjective.image_surjective @[simp] theorem Surjective.nonempty_preimage (hf : Surjective f) {s : Set β} : (f ⁻¹' s).Nonempty ↔ s.Nonempty := by rw [← nonempty_image_iff, hf.image_preimage] #align function.surjective.nonempty_preimage Function.Surjective.nonempty_preimage theorem Injective.image_injective (hf : Injective f) : Injective (image f) := by intro s t h rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, h] #align function.injective.image_injective Function.Injective.image_injective theorem Surjective.preimage_subset_preimage_iff {s t : Set β} (hf : Surjective f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by apply Set.preimage_subset_preimage_iff rw [hf.range_eq] apply subset_univ #align function.surjective.preimage_subset_preimage_iff Function.Surjective.preimage_subset_preimage_iff theorem Surjective.range_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) : range (g ∘ f) = range g := ext fun y => (@Surjective.exists _ _ _ hf fun x => g x = y).symm #align function.surjective.range_comp Function.Surjective.range_comp theorem Injective.mem_range_iff_exists_unique (hf : Injective f) {b : β} : b ∈ range f ↔ ∃! a, f a = b := ⟨fun ⟨a, h⟩ => ⟨a, h, fun _ ha => hf (ha.trans h.symm)⟩, ExistsUnique.exists⟩ #align function.injective.mem_range_iff_exists_unique Function.Injective.mem_range_iff_exists_unique theorem Injective.exists_unique_of_mem_range (hf : Injective f) {b : β} (hb : b ∈ range f) : ∃! a, f a = b := hf.mem_range_iff_exists_unique.mp hb #align function.injective.exists_unique_of_mem_range Function.Injective.exists_unique_of_mem_range theorem Injective.compl_image_eq (hf : Injective f) (s : Set α) : (f '' s)ᶜ = f '' sᶜ ∪ (range f)ᶜ := by ext y rcases em (y ∈ range f) with (⟨x, rfl⟩ | hx) · simp [hf.eq_iff] · rw [mem_range, not_exists] at hx simp [hx] #align function.injective.compl_image_eq Function.Injective.compl_image_eq theorem LeftInverse.image_image {g : β → α} (h : LeftInverse g f) (s : Set α) : g '' (f '' s) = s := by rw [← image_comp, h.comp_eq_id, image_id] #align function.left_inverse.image_image Function.LeftInverse.image_image theorem LeftInverse.preimage_preimage {g : β → α} (h : LeftInverse g f) (s : Set α) : f ⁻¹' (g ⁻¹' s) = s := by rw [← preimage_comp, h.comp_eq_id, preimage_id] #align function.left_inverse.preimage_preimage Function.LeftInverse.preimage_preimage protected theorem Involutive.preimage {f : α → α} (hf : Involutive f) : Involutive (preimage f) := hf.rightInverse.preimage_preimage #align function.involutive.preimage Function.Involutive.preimage end Function namespace EquivLike variable {E : Type*} [EquivLike E ι ι'] @[simp] lemma range_comp (f : ι' → α) (e : E) : range (f ∘ e) = range f := (EquivLike.surjective _).range_comp _ #align equiv_like.range_comp EquivLike.range_comp end EquivLike /-! ### Image and preimage on subtypes -/ namespace Subtype variable {α : Type*} theorem coe_image {p : α → Prop} {s : Set (Subtype p)} : (↑) '' s = { x | ∃ h : p x, (⟨x, h⟩ : Subtype p) ∈ s } := Set.ext fun a => ⟨fun ⟨⟨_, ha'⟩, in_s, h_eq⟩ => h_eq ▸ ⟨ha', in_s⟩, fun ⟨ha, in_s⟩ => ⟨⟨a, ha⟩, in_s, rfl⟩⟩ #align subtype.coe_image Subtype.coe_image @[simp] theorem coe_image_of_subset {s t : Set α} (h : t ⊆ s) : (↑) '' { x : ↥s | ↑x ∈ t } = t := by ext x rw [mem_image] exact ⟨fun ⟨_, hx', hx⟩ => hx ▸ hx', fun hx => ⟨⟨x, h hx⟩, hx, rfl⟩⟩ #align subtype.coe_image_of_subset Subtype.coe_image_of_subset theorem range_coe {s : Set α} : range ((↑) : s → α) = s := by rw [← image_univ] simp [-image_univ, coe_image] #align subtype.range_coe Subtype.range_coe /-- A variant of `range_coe`. Try to use `range_coe` if possible. This version is useful when defining a new type that is defined as the subtype of something. In that case, the coercion doesn't fire anymore. -/ theorem range_val {s : Set α} : range (Subtype.val : s → α) = s := range_coe #align subtype.range_val Subtype.range_val /-- We make this the simp lemma instead of `range_coe`. The reason is that if we write for `s : Set α` the function `(↑) : s → α`, then the inferred implicit arguments of `(↑)` are `↑α (fun x ↦ x ∈ s)`. -/ @[simp] theorem range_coe_subtype {p : α → Prop} : range ((↑) : Subtype p → α) = { x | p x } := range_coe #align subtype.range_coe_subtype Subtype.range_coe_subtype @[simp] theorem coe_preimage_self (s : Set α) : ((↑) : s → α) ⁻¹' s = univ := by rw [← preimage_range, range_coe] #align subtype.coe_preimage_self Subtype.coe_preimage_self theorem range_val_subtype {p : α → Prop} : range (Subtype.val : Subtype p → α) = { x | p x } := range_coe #align subtype.range_val_subtype Subtype.range_val_subtype theorem coe_image_subset (s : Set α) (t : Set s) : ((↑) : s → α) '' t ⊆ s := fun x ⟨y, _, yvaleq⟩ => by rw [← yvaleq]; exact y.property #align subtype.coe_image_subset Subtype.coe_image_subset theorem coe_image_univ (s : Set α) : ((↑) : s → α) '' Set.univ = s := image_univ.trans range_coe #align subtype.coe_image_univ Subtype.coe_image_univ @[simp] theorem image_preimage_coe (s t : Set α) : ((↑) : s → α) '' (((↑) : s → α) ⁻¹' t) = t ∩ s := image_preimage_eq_inter_range.trans <| congr_arg _ range_coe #align subtype.image_preimage_coe Subtype.image_preimage_coe theorem image_preimage_val (s t : Set α) : (Subtype.val : s → α) '' (Subtype.val ⁻¹' t) = t ∩ s := image_preimage_coe s t #align subtype.image_preimage_val Subtype.image_preimage_val theorem preimage_coe_eq_preimage_coe_iff {s t u : Set α} : ((↑) : s → α) ⁻¹' t = ((↑) : s → α) ⁻¹' u ↔ t ∩ s = u ∩ s := by rw [← image_preimage_coe, ← image_preimage_coe, coe_injective.image_injective.eq_iff] #align subtype.preimage_coe_eq_preimage_coe_iff Subtype.preimage_coe_eq_preimage_coe_iff -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_inter_self (s t : Set α) : ((↑) : s → α) ⁻¹' (t ∩ s) = ((↑) : s → α) ⁻¹' t := by rw [preimage_coe_eq_preimage_coe_iff, inter_assoc, inter_self] #align subtype.preimage_coe_inter_self Subtype.preimage_coe_inter_self theorem preimage_val_eq_preimage_val_iff (s t u : Set α) : (Subtype.val : s → α) ⁻¹' t = Subtype.val ⁻¹' u ↔ t ∩ s = u ∩ s := preimage_coe_eq_preimage_coe_iff #align subtype.preimage_val_eq_preimage_val_iff Subtype.preimage_val_eq_preimage_val_iff theorem exists_set_subtype {t : Set α} (p : Set α → Prop) : (∃ s : Set t, p (((↑) : t → α) '' s)) ↔ ∃ s : Set α, s ⊆ t ∧ p s := by rw [← exists_subset_range_and_iff, range_coe] #align subtype.exists_set_subtype Subtype.exists_set_subtype theorem forall_set_subtype {t : Set α} (p : Set α → Prop) : (∀ s : Set t, p (((↑) : t → α) '' s)) ↔ ∀ s : Set α, s ⊆ t → p s := by rw [← forall_subset_range_iff, range_coe] theorem preimage_coe_nonempty {s t : Set α} : (((↑) : s → α) ⁻¹' t).Nonempty ↔ (s ∩ t).Nonempty := by rw [inter_comm, ← image_preimage_coe, nonempty_image_iff] #align subtype.preimage_coe_nonempty Subtype.preimage_coe_nonempty theorem preimage_coe_eq_empty {s t : Set α} : ((↑) : s → α) ⁻¹' t = ∅ ↔ s ∩ t = ∅ := by simp [← not_nonempty_iff_eq_empty, preimage_coe_nonempty] #align subtype.preimage_coe_eq_empty Subtype.preimage_coe_eq_empty -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_compl (s : Set α) : ((↑) : s → α) ⁻¹' sᶜ = ∅ := preimage_coe_eq_empty.2 (inter_compl_self s) #align subtype.preimage_coe_compl Subtype.preimage_coe_compl @[simp] theorem preimage_coe_compl' (s : Set α) : (fun x : (sᶜ : Set α) => (x : α)) ⁻¹' s = ∅ := preimage_coe_eq_empty.2 (compl_inter_self s) #align subtype.preimage_coe_compl' Subtype.preimage_coe_compl' end Subtype /-! ### Images and preimages on `Option` -/ open Set namespace Option theorem injective_iff {α β} {f : Option α → β} : Injective f ↔ Injective (f ∘ some) ∧ f none ∉ range (f ∘ some) := by simp only [mem_range, not_exists, (· ∘ ·)] refine' ⟨fun hf => ⟨hf.comp (Option.some_injective _), fun x => hf.ne <| Option.some_ne_none _⟩, _⟩ rintro ⟨h_some, h_none⟩ (_ | a) (_ | b) hab exacts [rfl, (h_none _ hab.symm).elim, (h_none _ hab).elim, congr_arg some (h_some hab)] #align option.injective_iff Option.injective_iff theorem range_eq {α β} (f : Option α → β) : range f = insert (f none) (range (f ∘ some)) := Set.ext fun _ => Option.exists.trans <| eq_comm.or Iff.rfl #align option.range_eq Option.range_eq end Option theorem WithBot.range_eq {α β} (f : WithBot α → β) : range f = insert (f ⊥) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_bot.range_eq WithBot.range_eq theorem WithTop.range_eq {α β} (f : WithTop α → β) : range f = insert (f ⊤) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_top.range_eq WithTop.range_eq namespace Set open Function /-! ### Injectivity and surjectivity lemmas for image and preimage -/ section ImagePreimage variable {α : Type u} {β : Type v} {f : α → β} @[simp] theorem preimage_injective : Injective (preimage f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.preimage_injective⟩ obtain ⟨x, hx⟩ : (f ⁻¹' {y}).Nonempty := by rw [h.nonempty_apply_iff preimage_empty] apply singleton_nonempty exact ⟨x, hx⟩ #align set.preimage_injective Set.preimage_injective @[simp] theorem preimage_surjective : Surjective (preimage f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.preimage_surjective⟩ cases' h {x} with s hs; have := mem_singleton x rwa [← hs, mem_preimage, hx, ← mem_preimage, hs, mem_singleton_iff, eq_comm] at this #align set.preimage_surjective Set.preimage_surjective @[simp] theorem image_surjective : Surjective (image f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.image_surjective⟩ cases' h {y} with s hs have := mem_singleton y; rw [← hs] at this; rcases this with ⟨x, _, hx⟩ exact ⟨x, hx⟩ #align set.image_surjective Set.image_surjective @[simp] theorem image_injective : Injective (image f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.image_injective⟩ rw [← singleton_eq_singleton_iff]; apply h rw [image_singleton, image_singleton, hx] #align set.image_injective Set.image_injective theorem preimage_eq_iff_eq_image {f : α → β} (hf : Bijective f) {s t} : f ⁻¹' s = t ↔ s = f '' t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.preimage_eq_iff_eq_image Set.preimage_eq_iff_eq_image theorem eq_preimage_iff_image_eq {f : α → β} (hf : Bijective f) {s t} : s = f ⁻¹' t ↔ f '' s = t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.eq_preimage_iff_image_eq Set.eq_preimage_iff_image_eq end ImagePreimage end Set /-! ### Disjoint lemmas for image and preimage -/ section Disjoint variable {α β γ : Type*} {f : α → β} {s t : Set α} theorem Disjoint.preimage (f : α → β) {s t : Set β} (h : Disjoint s t) : Disjoint (f ⁻¹' s) (f ⁻¹' t) := disjoint_iff_inf_le.mpr fun _ hx => h.le_bot hx #align disjoint.preimage Disjoint.preimage namespace Set theorem disjoint_image_image {f : β → α} {g : γ → α} {s : Set β} {t : Set γ} (h : ∀ b ∈ s, ∀ c ∈ t, f b ≠ g c) : Disjoint (f '' s) (g '' t) := disjoint_iff_inf_le.mpr <| by rintro a ⟨⟨b, hb, eq⟩, c, hc, rfl⟩; exact h b hb c hc eq #align set.disjoint_image_image Set.disjoint_image_image theorem disjoint_image_of_injective (hf : Injective f) {s t : Set α} (hd : Disjoint s t) : Disjoint (f '' s) (f '' t) := disjoint_image_image fun _ hx _ hy => hf.ne fun H => Set.disjoint_iff.1 hd ⟨hx, H.symm ▸ hy⟩ #align set.disjoint_image_of_injective Set.disjoint_image_of_injective theorem _root_.Disjoint.of_image (h : Disjoint (f '' s) (f '' t)) : Disjoint s t := disjoint_iff_inf_le.mpr fun _ hx => disjoint_left.1 h (mem_image_of_mem _ hx.1) (mem_image_of_mem _ hx.2) #align disjoint.of_image Disjoint.of_image @[simp] theorem disjoint_image_iff (hf : Injective f) : Disjoint (f '' s) (f '' t) ↔ Disjoint s t := ⟨Disjoint.of_image, disjoint_image_of_injective hf⟩ #align set.disjoint_image_iff Set.disjoint_image_iff theorem _root_.Disjoint.of_preimage (hf : Surjective f) {s t : Set β} (h : Disjoint (f ⁻¹' s) (f ⁻¹' t)) : Disjoint s t := by rw [disjoint_iff_inter_eq_empty, ← image_preimage_eq (_ ∩ _) hf, preimage_inter, h.inter_eq, image_empty] #align disjoint.of_preimage Disjoint.of_preimage @[simp] theorem disjoint_preimage_iff (hf : Surjective f) {s t : Set β} : Disjoint (f ⁻¹' s) (f ⁻¹' t) ↔ Disjoint s t := ⟨Disjoint.of_preimage hf, Disjoint.preimage _⟩ #align set.disjoint_preimage_iff Set.disjoint_preimage_iff theorem preimage_eq_empty {s : Set β} (h : Disjoint s (range f)) : f ⁻¹' s = ∅ := by simpa using h.preimage f #align set.preimage_eq_empty Set.preimage_eq_empty theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢ intro y hy x hx rw [← hx] at hy
exact h x hy
theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢ intro y hy x hx rw [← hx] at hy
Mathlib.Data.Set.Image.1653_0.IJFiTzmYGOCpPSd
theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f)
Mathlib_Data_Set_Image
α : Type u_1 β : α → Type u_2 i j : α s : Set (β i) h : i ≠ j ⊢ Sigma.mk j ⁻¹' (Sigma.mk i '' s) = ∅
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h by_cases hs : a ∈ t · right refine' ⟨t \ {a}, _, _⟩ · rw [diff_singleton_subset_iff] assumption · rw [insert_diff_singleton, insert_eq_of_mem hs] · left exact (subset_insert_iff_of_not_mem hs).mp h · rintro (h | ⟨s', h₁, rfl⟩) · exact subset_trans h (subset_insert a s) · exact insert_subset_insert h₁ #align set.powerset_insert Set.powerset_insert /-! ### Lemmas about range of a function. -/ section Range variable {f : ι → α} {s t : Set α} /-- Range of a function. This function is more flexible than `f '' univ`, as the image requires that the domain is in Type and not an arbitrary Sort. -/ def range (f : ι → α) : Set α := { x | ∃ y, f y = x } #align set.range Set.range @[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := Iff.rfl #align set.mem_range Set.mem_range -- Porting note -- @[simp] `simp` can prove this @[mfld_simps] theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩ #align set.mem_range_self Set.mem_range_self theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ ∀ i, p (f i) := by simp #align set.forall_range_iff Set.forall_range_iff theorem forall_subtype_range_iff {p : range f → Prop} : (∀ a : range f, p a) ↔ ∀ i, p ⟨f i, mem_range_self _⟩ := ⟨fun H i => H _, fun H ⟨y, i, hi⟩ => by subst hi apply H⟩ #align set.forall_subtype_range_iff Set.forall_subtype_range_iff theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ ∃ i, p (f i) := by simp #align set.exists_range_iff Set.exists_range_iff theorem exists_range_iff' {p : α → Prop} : (∃ a, a ∈ range f ∧ p a) ↔ ∃ i, p (f i) := by simpa only [exists_prop] using exists_range_iff #align set.exists_range_iff' Set.exists_range_iff' theorem exists_subtype_range_iff {p : range f → Prop} : (∃ a : range f, p a) ↔ ∃ i, p ⟨f i, mem_range_self _⟩ := ⟨fun ⟨⟨a, i, hi⟩, ha⟩ => by subst a exact ⟨i, ha⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩ #align set.exists_subtype_range_iff Set.exists_subtype_range_iff theorem range_iff_surjective : range f = univ ↔ Surjective f := eq_univ_iff_forall #align set.range_iff_surjective Set.range_iff_surjective -- Porting note: Lean4 unfolds `Surjective` here, ruining dot notation alias ⟨_, _root_.Function.Surjective.range_eq⟩ := range_iff_surjective #align function.surjective.range_eq Function.Surjective.range_eq @[simp] theorem image_univ {f : α → β} : f '' univ = range f := by ext simp [image, range] #align set.image_univ Set.image_univ theorem image_subset_range (f : α → β) (s) : f '' s ⊆ range f := by rw [← image_univ]; exact image_subset _ (subset_univ _) #align set.image_subset_range Set.image_subset_range theorem mem_range_of_mem_image (f : α → β) (s) {x : β} (h : x ∈ f '' s) : x ∈ range f := image_subset_range f s h #align set.mem_range_of_mem_image Set.mem_range_of_mem_image theorem _root_.Nat.mem_range_succ (i : ℕ) : i ∈ range Nat.succ ↔ 0 < i := ⟨by rintro ⟨n, rfl⟩ exact Nat.succ_pos n, fun h => ⟨_, Nat.succ_pred_eq_of_pos h⟩⟩ #align nat.mem_range_succ Nat.mem_range_succ theorem Nonempty.preimage' {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : s ⊆ range f) : (f ⁻¹' s).Nonempty := let ⟨_, hy⟩ := hs let ⟨x, hx⟩ := hf hy ⟨x, Set.mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage' Set.Nonempty.preimage' theorem range_comp (g : α → β) (f : ι → α) : range (g ∘ f) = g '' range f := Subset.antisymm (forall_range_iff.mpr fun _ => mem_image_of_mem g (mem_range_self _)) (ball_image_iff.mpr <| forall_range_iff.mpr mem_range_self) #align set.range_comp Set.range_comp theorem range_subset_iff : range f ⊆ s ↔ ∀ y, f y ∈ s := forall_range_iff #align set.range_subset_iff Set.range_subset_iff theorem range_subset_range_iff_exists_comp {f : α → γ} {g : β → γ} : range f ⊆ range g ↔ ∃ h : α → β, f = g ∘ h := by simp only [range_subset_iff, mem_range, Classical.skolem, Function.funext_iff, (· ∘ ·), eq_comm] theorem range_eq_iff (f : α → β) (s : Set β) : range f = s ↔ (∀ a, f a ∈ s) ∧ ∀ b ∈ s, ∃ a, f a = b := by rw [← range_subset_iff] exact le_antisymm_iff #align set.range_eq_iff Set.range_eq_iff theorem range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g := by rw [range_comp]; apply image_subset_range #align set.range_comp_subset_range Set.range_comp_subset_range theorem range_nonempty_iff_nonempty : (range f).Nonempty ↔ Nonempty ι := ⟨fun ⟨_, x, _⟩ => ⟨x⟩, fun ⟨x⟩ => ⟨f x, mem_range_self x⟩⟩ #align set.range_nonempty_iff_nonempty Set.range_nonempty_iff_nonempty theorem range_nonempty [h : Nonempty ι] (f : ι → α) : (range f).Nonempty := range_nonempty_iff_nonempty.2 h #align set.range_nonempty Set.range_nonempty @[simp] theorem range_eq_empty_iff {f : ι → α} : range f = ∅ ↔ IsEmpty ι := by rw [← not_nonempty_iff, ← range_nonempty_iff_nonempty, not_nonempty_iff_eq_empty] #align set.range_eq_empty_iff Set.range_eq_empty_iff theorem range_eq_empty [IsEmpty ι] (f : ι → α) : range f = ∅ := range_eq_empty_iff.2 ‹_› #align set.range_eq_empty Set.range_eq_empty instance instNonemptyRange [Nonempty ι] (f : ι → α) : Nonempty (range f) := (range_nonempty f).to_subtype @[simp] theorem image_union_image_compl_eq_range (f : α → β) : f '' s ∪ f '' sᶜ = range f := by rw [← image_union, ← image_univ, ← union_compl_self] #align set.image_union_image_compl_eq_range Set.image_union_image_compl_eq_range theorem insert_image_compl_eq_range (f : α → β) (x : α) : insert (f x) (f '' {x}ᶜ) = range f := by rw [← image_insert_eq, insert_eq, union_compl_self, image_univ] #align set.insert_image_compl_eq_range Set.insert_image_compl_eq_range theorem image_preimage_eq_inter_range {f : α → β} {t : Set β} : f '' (f ⁻¹' t) = t ∩ range f := ext fun x => ⟨fun ⟨x, hx, HEq⟩ => HEq ▸ ⟨hx, mem_range_self _⟩, fun ⟨hx, ⟨y, h_eq⟩⟩ => h_eq ▸ mem_image_of_mem f <| show y ∈ f ⁻¹' t by rw [preimage, mem_setOf, h_eq]; exact hx⟩ #align set.image_preimage_eq_inter_range Set.image_preimage_eq_inter_range theorem image_preimage_eq_of_subset {f : α → β} {s : Set β} (hs : s ⊆ range f) : f '' (f ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs] #align set.image_preimage_eq_of_subset Set.image_preimage_eq_of_subset theorem image_preimage_eq_iff {f : α → β} {s : Set β} : f '' (f ⁻¹' s) = s ↔ s ⊆ range f := ⟨by intro h rw [← h] apply image_subset_range, image_preimage_eq_of_subset⟩ #align set.image_preimage_eq_iff Set.image_preimage_eq_iff theorem subset_range_iff_exists_image_eq {f : α → β} {s : Set β} : s ⊆ range f ↔ ∃ t, f '' t = s := ⟨fun h => ⟨_, image_preimage_eq_iff.2 h⟩, fun ⟨_, ht⟩ => ht ▸ image_subset_range _ _⟩ #align set.subset_range_iff_exists_image_eq Set.subset_range_iff_exists_image_eq theorem range_image (f : α → β) : range (image f) = 𝒫 range f := ext fun _ => subset_range_iff_exists_image_eq.symm #align set.range_image Set.range_image @[simp] theorem exists_subset_range_and_iff {f : α → β} {p : Set β → Prop} : (∃ s, s ⊆ range f ∧ p s) ↔ ∃ s, p (f '' s) := by rw [← exists_range_iff, range_image]; rfl #align set.exists_subset_range_and_iff Set.exists_subset_range_and_iff theorem exists_subset_range_iff {f : α → β} {p : Set β → Prop} : (∃ (s : _) (_ : s ⊆ range f), p s) ↔ ∃ s, p (f '' s) := by simp #align set.exists_subset_range_iff Set.exists_subset_range_iff theorem forall_subset_range_iff {f : α → β} {p : Set β → Prop} : (∀ s, s ⊆ range f → p s) ↔ ∀ s, p (f '' s) := by rw [← forall_range_iff, range_image]; rfl theorem preimage_subset_preimage_iff {s t : Set α} {f : β → α} (hs : s ⊆ range f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by constructor · intro h x hx rcases hs hx with ⟨y, rfl⟩ exact h hx intro h x; apply h #align set.preimage_subset_preimage_iff Set.preimage_subset_preimage_iff theorem preimage_eq_preimage' {s t : Set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := by constructor · intro h apply Subset.antisymm · rw [← preimage_subset_preimage_iff hs, h] · rw [← preimage_subset_preimage_iff ht, h] rintro rfl; rfl #align set.preimage_eq_preimage' Set.preimage_eq_preimage' -- Porting note: -- @[simp] `simp` can prove this theorem preimage_inter_range {f : α → β} {s : Set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s := Set.ext fun x => and_iff_left ⟨x, rfl⟩ #align set.preimage_inter_range Set.preimage_inter_range -- Porting note: -- @[simp] `simp` can prove this theorem preimage_range_inter {f : α → β} {s : Set β} : f ⁻¹' (range f ∩ s) = f ⁻¹' s := by rw [inter_comm, preimage_inter_range] #align set.preimage_range_inter Set.preimage_range_inter theorem preimage_image_preimage {f : α → β} {s : Set β} : f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s := by rw [image_preimage_eq_inter_range, preimage_inter_range] #align set.preimage_image_preimage Set.preimage_image_preimage @[simp, mfld_simps] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id #align set.range_id Set.range_id @[simp, mfld_simps] theorem range_id' : (range fun x : α => x) = univ := range_id #align set.range_id' Set.range_id' @[simp] theorem _root_.Prod.range_fst [Nonempty β] : range (Prod.fst : α × β → α) = univ := Prod.fst_surjective.range_eq #align prod.range_fst Prod.range_fst @[simp] theorem _root_.Prod.range_snd [Nonempty α] : range (Prod.snd : α × β → β) = univ := Prod.snd_surjective.range_eq #align prod.range_snd Prod.range_snd @[simp] theorem range_eval {α : ι → Sort _} [∀ i, Nonempty (α i)] (i : ι) : range (eval i : (∀ i, α i) → α i) = univ := (surjective_eval i).range_eq #align set.range_eval Set.range_eval theorem range_inl : range (@Sum.inl α β) = {x | Sum.isLeft x} := by ext (_|_) <;> simp #align set.range_inl Set.range_inl theorem range_inr : range (@Sum.inr α β) = {x | Sum.isRight x} := by ext (_|_) <;> simp #align set.range_inr Set.range_inr theorem isCompl_range_inl_range_inr : IsCompl (range <| @Sum.inl α β) (range Sum.inr) := IsCompl.of_le (by rintro y ⟨⟨x₁, rfl⟩, ⟨x₂, h⟩⟩ exact Sum.noConfusion h) (by rintro (x | y) - <;> [left; right] <;> exact mem_range_self _) #align set.is_compl_range_inl_range_inr Set.isCompl_range_inl_range_inr @[simp] theorem range_inl_union_range_inr : range (Sum.inl : α → Sum α β) ∪ range Sum.inr = univ := isCompl_range_inl_range_inr.sup_eq_top #align set.range_inl_union_range_inr Set.range_inl_union_range_inr @[simp] theorem range_inl_inter_range_inr : range (Sum.inl : α → Sum α β) ∩ range Sum.inr = ∅ := isCompl_range_inl_range_inr.inf_eq_bot #align set.range_inl_inter_range_inr Set.range_inl_inter_range_inr @[simp] theorem range_inr_union_range_inl : range (Sum.inr : β → Sum α β) ∪ range Sum.inl = univ := isCompl_range_inl_range_inr.symm.sup_eq_top #align set.range_inr_union_range_inl Set.range_inr_union_range_inl @[simp] theorem range_inr_inter_range_inl : range (Sum.inr : β → Sum α β) ∩ range Sum.inl = ∅ := isCompl_range_inl_range_inr.symm.inf_eq_bot #align set.range_inr_inter_range_inl Set.range_inr_inter_range_inl @[simp] theorem preimage_inl_image_inr (s : Set β) : Sum.inl ⁻¹' (@Sum.inr α β '' s) = ∅ := by ext simp #align set.preimage_inl_image_inr Set.preimage_inl_image_inr @[simp] theorem preimage_inr_image_inl (s : Set α) : Sum.inr ⁻¹' (@Sum.inl α β '' s) = ∅ := by ext simp #align set.preimage_inr_image_inl Set.preimage_inr_image_inl @[simp] theorem preimage_inl_range_inr : Sum.inl ⁻¹' range (Sum.inr : β → Sum α β) = ∅ := by rw [← image_univ, preimage_inl_image_inr] #align set.preimage_inl_range_inr Set.preimage_inl_range_inr @[simp] theorem preimage_inr_range_inl : Sum.inr ⁻¹' range (Sum.inl : α → Sum α β) = ∅ := by rw [← image_univ, preimage_inr_image_inl] #align set.preimage_inr_range_inl Set.preimage_inr_range_inl @[simp] theorem compl_range_inl : (range (Sum.inl : α → Sum α β))ᶜ = range (Sum.inr : β → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr #align set.compl_range_inl Set.compl_range_inl @[simp] theorem compl_range_inr : (range (Sum.inr : β → Sum α β))ᶜ = range (Sum.inl : α → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr.symm #align set.compl_range_inr Set.compl_range_inr theorem image_preimage_inl_union_image_preimage_inr (s : Set (Sum α β)) : Sum.inl '' (Sum.inl ⁻¹' s) ∪ Sum.inr '' (Sum.inr ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, ← inter_distrib_left, range_inl_union_range_inr, inter_univ] #align set.image_preimage_inl_union_image_preimage_inr Set.image_preimage_inl_union_image_preimage_inr @[simp] theorem range_quot_mk (r : α → α → Prop) : range (Quot.mk r) = univ := (surjective_quot_mk r).range_eq #align set.range_quot_mk Set.range_quot_mk @[simp] theorem range_quot_lift {r : ι → ι → Prop} (hf : ∀ x y, r x y → f x = f y) : range (Quot.lift f hf) = range f := ext fun _ => (surjective_quot_mk _).exists #align set.range_quot_lift Set.range_quot_lift -- Porting note: the `Setoid α` instance is not being filled in @[simp] theorem range_quotient_mk [sa : Setoid α] : (range (α := Quotient sa) fun x : α => ⟦x⟧) = univ := range_quot_mk _ #align set.range_quotient_mk Set.range_quotient_mk @[simp] theorem range_quotient_lift [s : Setoid ι] (hf) : range (Quotient.lift f hf : Quotient s → α) = range f := range_quot_lift _ #align set.range_quotient_lift Set.range_quotient_lift @[simp] theorem range_quotient_mk' {s : Setoid α} : range (Quotient.mk' : α → Quotient s) = univ := range_quot_mk _ #align set.range_quotient_mk' Set.range_quotient_mk' @[simp] lemma Quotient.range_mk'' {sa : Setoid α} : range (Quotient.mk'' (s₁ := sa)) = univ := range_quotient_mk @[simp] theorem range_quotient_lift_on' {s : Setoid ι} (hf) : (range fun x : Quotient s => Quotient.liftOn' x f hf) = range f := range_quot_lift _ #align set.range_quotient_lift_on' Set.range_quotient_lift_on' instance canLift (c) (p) [CanLift α β c p] : CanLift (Set α) (Set β) (c '' ·) fun s => ∀ x ∈ s, p x where prf _ hs := subset_range_iff_exists_image_eq.mp fun x hx => CanLift.prf _ (hs x hx) #align set.can_lift Set.canLift theorem range_const_subset {c : α} : (range fun _ : ι => c) ⊆ {c} := range_subset_iff.2 fun _ => rfl #align set.range_const_subset Set.range_const_subset @[simp] theorem range_const : ∀ [Nonempty ι] {c : α}, (range fun _ : ι => c) = {c} | ⟨x⟩, _ => (Subset.antisymm range_const_subset) fun _ hy => (mem_singleton_iff.1 hy).symm ▸ mem_range_self x #align set.range_const Set.range_const theorem range_subtype_map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀ x, p x → q (f x)) : range (Subtype.map f h) = (↑) ⁻¹' (f '' { x | p x }) := by ext ⟨x, hx⟩ rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.coe_mk] apply Iff.intro · rintro ⟨a, b, hab⟩ rw [Subtype.map, Subtype.mk.injEq] at hab use a trivial · rintro ⟨a, b, hab⟩ use a use b rw [Subtype.map, Subtype.mk.injEq] exact hab -- Porting note: `simp_rw` fails here -- simp_rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.map, Subtype.coe_mk, -- mem_set_of, exists_prop] #align set.range_subtype_map Set.range_subtype_map theorem image_swap_eq_preimage_swap : image (@Prod.swap α β) = preimage Prod.swap := image_eq_preimage_of_inverse Prod.swap_leftInverse Prod.swap_rightInverse #align set.image_swap_eq_preimage_swap Set.image_swap_eq_preimage_swap theorem preimage_singleton_nonempty {f : α → β} {y : β} : (f ⁻¹' {y}).Nonempty ↔ y ∈ range f := Iff.rfl #align set.preimage_singleton_nonempty Set.preimage_singleton_nonempty theorem preimage_singleton_eq_empty {f : α → β} {y : β} : f ⁻¹' {y} = ∅ ↔ y ∉ range f := not_nonempty_iff_eq_empty.symm.trans preimage_singleton_nonempty.not #align set.preimage_singleton_eq_empty Set.preimage_singleton_eq_empty theorem range_subset_singleton {f : ι → α} {x : α} : range f ⊆ {x} ↔ f = const ι x := by simp [range_subset_iff, funext_iff, mem_singleton] #align set.range_subset_singleton Set.range_subset_singleton theorem image_compl_preimage {f : α → β} {s : Set β} : f '' (f ⁻¹' s)ᶜ = range f \ s := by rw [compl_eq_univ_diff, image_diff_preimage, image_univ] #align set.image_compl_preimage Set.image_compl_preimage /-- Any map `f : ι → β` factors through a map `rangeFactorization f : ι → range f`. -/ def rangeFactorization (f : ι → β) : ι → range f := fun i => ⟨f i, mem_range_self i⟩ #align set.range_factorization Set.rangeFactorization theorem rangeFactorization_eq {f : ι → β} : Subtype.val ∘ rangeFactorization f = f := funext fun _ => rfl #align set.range_factorization_eq Set.rangeFactorization_eq @[simp] theorem rangeFactorization_coe (f : ι → β) (a : ι) : (rangeFactorization f a : β) = f a := rfl #align set.range_factorization_coe Set.rangeFactorization_coe @[simp] theorem coe_comp_rangeFactorization (f : ι → β) : (↑) ∘ rangeFactorization f = f := rfl #align set.coe_comp_range_factorization Set.coe_comp_rangeFactorization theorem surjective_onto_range : Surjective (rangeFactorization f) := fun ⟨_, ⟨i, rfl⟩⟩ => ⟨i, rfl⟩ #align set.surjective_onto_range Set.surjective_onto_range theorem image_eq_range (f : α → β) (s : Set α) : f '' s = range fun x : s => f x := by ext constructor rintro ⟨x, h1, h2⟩ exact ⟨⟨x, h1⟩, h2⟩ rintro ⟨⟨x, h1⟩, h2⟩ exact ⟨x, h1, h2⟩ #align set.image_eq_range Set.image_eq_range theorem _root_.Sum.range_eq (f : Sum α β → γ) : range f = range (f ∘ Sum.inl) ∪ range (f ∘ Sum.inr) := ext fun _ => Sum.exists #align sum.range_eq Sum.range_eq @[simp] theorem Sum.elim_range (f : α → γ) (g : β → γ) : range (Sum.elim f g) = range f ∪ range g := Sum.range_eq _ #align set.sum.elim_range Set.Sum.elim_range theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g := by by_cases h : p · rw [if_pos h] exact subset_union_left _ _ · rw [if_neg h] exact subset_union_right _ _ #align set.range_ite_subset' Set.range_ite_subset' theorem range_ite_subset {p : α → Prop} [DecidablePred p] {f g : α → β} : (range fun x => if p x then f x else g x) ⊆ range f ∪ range g := by rw [range_subset_iff]; intro x; by_cases h : p x simp only [if_pos h, mem_union, mem_range, exists_apply_eq_apply, true_or] simp [if_neg h, mem_union, mem_range_self] #align set.range_ite_subset Set.range_ite_subset @[simp] theorem preimage_range (f : α → β) : f ⁻¹' range f = univ := eq_univ_of_forall mem_range_self #align set.preimage_range Set.preimage_range /-- The range of a function from a `Unique` type contains just the function applied to its single value. -/ theorem range_unique [h : Unique ι] : range f = {f default} := by ext x rw [mem_range] constructor · rintro ⟨i, hi⟩ rw [h.uniq i] at hi exact hi ▸ mem_singleton _ · exact fun h => ⟨default, h.symm⟩ #align set.range_unique Set.range_unique theorem range_diff_image_subset (f : α → β) (s : Set α) : range f \ f '' s ⊆ f '' sᶜ := fun _ ⟨⟨x, h₁⟩, h₂⟩ => ⟨x, fun h => h₂ ⟨x, h, h₁⟩, h₁⟩ #align set.range_diff_image_subset Set.range_diff_image_subset theorem range_diff_image {f : α → β} (H : Injective f) (s : Set α) : range f \ f '' s = f '' sᶜ := (Subset.antisymm (range_diff_image_subset f s)) fun _ ⟨_, hx, hy⟩ => hy ▸ ⟨mem_range_self _, fun ⟨_, hx', Eq⟩ => hx <| H Eq ▸ hx'⟩ #align set.range_diff_image Set.range_diff_image @[simp] theorem range_inclusion (h : s ⊆ t) : range (inclusion h) = { x : t | (x : α) ∈ s } := by ext ⟨x, hx⟩ -- Porting note: `simp [inclusion]` doesn't solve goal apply Iff.intro · rw [mem_range] rintro ⟨a, ha⟩ rw [inclusion, Subtype.mk.injEq] at ha rw [mem_setOf, Subtype.coe_mk, ← ha] exact Subtype.coe_prop _ · rw [mem_setOf, Subtype.coe_mk, mem_range] intro hx' use ⟨x, hx'⟩ trivial -- simp_rw [inclusion, mem_range, Subtype.mk_eq_mk] -- rw [SetCoe.exists, Subtype.coe_mk, exists_prop, exists_eq_right, mem_set_of, Subtype.coe_mk] #align set.range_inclusion Set.range_inclusion /-- We can use the axiom of choice to pick a preimage for every element of `range f`. -/ noncomputable def rangeSplitting (f : α → β) : range f → α := fun x => x.2.choose #align set.range_splitting Set.rangeSplitting -- This can not be a `@[simp]` lemma because the head of the left hand side is a variable. theorem apply_rangeSplitting (f : α → β) (x : range f) : f (rangeSplitting f x) = x := x.2.choose_spec #align set.apply_range_splitting Set.apply_rangeSplitting @[simp] theorem comp_rangeSplitting (f : α → β) : f ∘ rangeSplitting f = (↑) := by ext simp only [Function.comp_apply] apply apply_rangeSplitting #align set.comp_range_splitting Set.comp_rangeSplitting -- When `f` is injective, see also `Equiv.ofInjective`. theorem leftInverse_rangeSplitting (f : α → β) : LeftInverse (rangeFactorization f) (rangeSplitting f) := fun x => by apply Subtype.ext -- Porting note: why doesn't `ext` find this lemma? simp only [rangeFactorization_coe] apply apply_rangeSplitting #align set.left_inverse_range_splitting Set.leftInverse_rangeSplitting theorem rangeSplitting_injective (f : α → β) : Injective (rangeSplitting f) := (leftInverse_rangeSplitting f).injective #align set.range_splitting_injective Set.rangeSplitting_injective theorem rightInverse_rangeSplitting {f : α → β} (h : Injective f) : RightInverse (rangeFactorization f) (rangeSplitting f) := (leftInverse_rangeSplitting f).rightInverse_of_injective fun _ _ hxy => h <| Subtype.ext_iff.1 hxy #align set.right_inverse_range_splitting Set.rightInverse_rangeSplitting theorem preimage_rangeSplitting {f : α → β} (hf : Injective f) : preimage (rangeSplitting f) = image (rangeFactorization f) := (image_eq_preimage_of_inverse (rightInverse_rangeSplitting hf) (leftInverse_rangeSplitting f)).symm #align set.preimage_range_splitting Set.preimage_rangeSplitting theorem isCompl_range_some_none (α : Type*) : IsCompl (range (some : α → Option α)) {none} := IsCompl.of_le (fun _ ⟨⟨_, ha⟩, (hn : _ = none)⟩ => Option.some_ne_none _ (ha.trans hn)) fun x _ => Option.casesOn x (Or.inr rfl) fun _ => Or.inl <| mem_range_self _ #align set.is_compl_range_some_none Set.isCompl_range_some_none @[simp] theorem compl_range_some (α : Type*) : (range (some : α → Option α))ᶜ = {none} := (isCompl_range_some_none α).compl_eq #align set.compl_range_some Set.compl_range_some @[simp] theorem range_some_inter_none (α : Type*) : range (some : α → Option α) ∩ {none} = ∅ := (isCompl_range_some_none α).inf_eq_bot #align set.range_some_inter_none Set.range_some_inter_none -- Porting note: -- @[simp] `simp` can prove this theorem range_some_union_none (α : Type*) : range (some : α → Option α) ∪ {none} = univ := (isCompl_range_some_none α).sup_eq_top #align set.range_some_union_none Set.range_some_union_none @[simp] theorem insert_none_range_some (α : Type*) : insert none (range (some : α → Option α)) = univ := (isCompl_range_some_none α).symm.sup_eq_top #align set.insert_none_range_some Set.insert_none_range_some end Range section Subsingleton variable {s : Set α} /-- The image of a subsingleton is a subsingleton. -/ theorem Subsingleton.image (hs : s.Subsingleton) (f : α → β) : (f '' s).Subsingleton := fun _ ⟨_, hx, Hx⟩ _ ⟨_, hy, Hy⟩ => Hx ▸ Hy ▸ congr_arg f (hs hx hy) #align set.subsingleton.image Set.Subsingleton.image /-- The preimage of a subsingleton under an injective map is a subsingleton. -/ theorem Subsingleton.preimage {s : Set β} (hs : s.Subsingleton) {f : α → β} (hf : Function.Injective f) : (f ⁻¹' s).Subsingleton := fun _ ha _ hb => hf <| hs ha hb #align set.subsingleton.preimage Set.Subsingleton.preimage /-- If the image of a set under an injective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_image {f : α → β} (hf : Function.Injective f) (s : Set α) (hs : (f '' s).Subsingleton) : s.Subsingleton := (hs.preimage hf).anti <| subset_preimage_image _ _ #align set.subsingleton_of_image Set.subsingleton_of_image /-- If the preimage of a set under a surjective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_preimage {f : α → β} (hf : Function.Surjective f) (s : Set β) (hs : (f ⁻¹' s).Subsingleton) : s.Subsingleton := fun fx hx fy hy => by rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact congr_arg f (hs hx hy) #align set.subsingleton_of_preimage Set.subsingleton_of_preimage theorem subsingleton_range {α : Sort*} [Subsingleton α] (f : α → β) : (range f).Subsingleton := forall_range_iff.2 fun x => forall_range_iff.2 fun y => congr_arg f (Subsingleton.elim x y) #align set.subsingleton_range Set.subsingleton_range /-- The preimage of a nontrivial set under a surjective map is nontrivial. -/ theorem Nontrivial.preimage {s : Set β} (hs : s.Nontrivial) {f : α → β} (hf : Function.Surjective f) : (f ⁻¹' s).Nontrivial := by rcases hs with ⟨fx, hx, fy, hy, hxy⟩ rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial.preimage Set.Nontrivial.preimage /-- The image of a nontrivial set under an injective map is nontrivial. -/ theorem Nontrivial.image (hs : s.Nontrivial) {f : α → β} (hf : Function.Injective f) : (f '' s).Nontrivial := let ⟨x, hx, y, hy, hxy⟩ := hs ⟨f x, mem_image_of_mem f hx, f y, mem_image_of_mem f hy, hf.ne hxy⟩ #align set.nontrivial.image Set.Nontrivial.image /-- If the image of a set is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_image (f : α → β) (s : Set α) (hs : (f '' s).Nontrivial) : s.Nontrivial := let ⟨_, ⟨x, hx, rfl⟩, _, ⟨y, hy, rfl⟩, hxy⟩ := hs ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial_of_image Set.nontrivial_of_image /-- If the preimage of a set under an injective map is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_preimage {f : α → β} (hf : Function.Injective f) (s : Set β) (hs : (f ⁻¹' s).Nontrivial) : s.Nontrivial := (hs.image hf).mono <| image_preimage_subset _ _ #align set.nontrivial_of_preimage Set.nontrivial_of_preimage end Subsingleton end Set namespace Function variable {ι : Sort*} {f : α → β} open Set theorem Surjective.preimage_injective (hf : Surjective f) : Injective (preimage f) := fun _ _ => (preimage_eq_preimage hf).1 #align function.surjective.preimage_injective Function.Surjective.preimage_injective theorem Injective.preimage_image (hf : Injective f) (s : Set α) : f ⁻¹' (f '' s) = s := preimage_image_eq s hf #align function.injective.preimage_image Function.Injective.preimage_image theorem Injective.preimage_surjective (hf : Injective f) : Surjective (preimage f) := by intro s use f '' s rw [hf.preimage_image] #align function.injective.preimage_surjective Function.Injective.preimage_surjective theorem Injective.subsingleton_image_iff (hf : Injective f) {s : Set α} : (f '' s).Subsingleton ↔ s.Subsingleton := ⟨subsingleton_of_image hf s, fun h => h.image f⟩ #align function.injective.subsingleton_image_iff Function.Injective.subsingleton_image_iff theorem Surjective.image_preimage (hf : Surjective f) (s : Set β) : f '' (f ⁻¹' s) = s := image_preimage_eq s hf #align function.surjective.image_preimage Function.Surjective.image_preimage theorem Surjective.image_surjective (hf : Surjective f) : Surjective (image f) := by intro s use f ⁻¹' s rw [hf.image_preimage] #align function.surjective.image_surjective Function.Surjective.image_surjective @[simp] theorem Surjective.nonempty_preimage (hf : Surjective f) {s : Set β} : (f ⁻¹' s).Nonempty ↔ s.Nonempty := by rw [← nonempty_image_iff, hf.image_preimage] #align function.surjective.nonempty_preimage Function.Surjective.nonempty_preimage theorem Injective.image_injective (hf : Injective f) : Injective (image f) := by intro s t h rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, h] #align function.injective.image_injective Function.Injective.image_injective theorem Surjective.preimage_subset_preimage_iff {s t : Set β} (hf : Surjective f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by apply Set.preimage_subset_preimage_iff rw [hf.range_eq] apply subset_univ #align function.surjective.preimage_subset_preimage_iff Function.Surjective.preimage_subset_preimage_iff theorem Surjective.range_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) : range (g ∘ f) = range g := ext fun y => (@Surjective.exists _ _ _ hf fun x => g x = y).symm #align function.surjective.range_comp Function.Surjective.range_comp theorem Injective.mem_range_iff_exists_unique (hf : Injective f) {b : β} : b ∈ range f ↔ ∃! a, f a = b := ⟨fun ⟨a, h⟩ => ⟨a, h, fun _ ha => hf (ha.trans h.symm)⟩, ExistsUnique.exists⟩ #align function.injective.mem_range_iff_exists_unique Function.Injective.mem_range_iff_exists_unique theorem Injective.exists_unique_of_mem_range (hf : Injective f) {b : β} (hb : b ∈ range f) : ∃! a, f a = b := hf.mem_range_iff_exists_unique.mp hb #align function.injective.exists_unique_of_mem_range Function.Injective.exists_unique_of_mem_range theorem Injective.compl_image_eq (hf : Injective f) (s : Set α) : (f '' s)ᶜ = f '' sᶜ ∪ (range f)ᶜ := by ext y rcases em (y ∈ range f) with (⟨x, rfl⟩ | hx) · simp [hf.eq_iff] · rw [mem_range, not_exists] at hx simp [hx] #align function.injective.compl_image_eq Function.Injective.compl_image_eq theorem LeftInverse.image_image {g : β → α} (h : LeftInverse g f) (s : Set α) : g '' (f '' s) = s := by rw [← image_comp, h.comp_eq_id, image_id] #align function.left_inverse.image_image Function.LeftInverse.image_image theorem LeftInverse.preimage_preimage {g : β → α} (h : LeftInverse g f) (s : Set α) : f ⁻¹' (g ⁻¹' s) = s := by rw [← preimage_comp, h.comp_eq_id, preimage_id] #align function.left_inverse.preimage_preimage Function.LeftInverse.preimage_preimage protected theorem Involutive.preimage {f : α → α} (hf : Involutive f) : Involutive (preimage f) := hf.rightInverse.preimage_preimage #align function.involutive.preimage Function.Involutive.preimage end Function namespace EquivLike variable {E : Type*} [EquivLike E ι ι'] @[simp] lemma range_comp (f : ι' → α) (e : E) : range (f ∘ e) = range f := (EquivLike.surjective _).range_comp _ #align equiv_like.range_comp EquivLike.range_comp end EquivLike /-! ### Image and preimage on subtypes -/ namespace Subtype variable {α : Type*} theorem coe_image {p : α → Prop} {s : Set (Subtype p)} : (↑) '' s = { x | ∃ h : p x, (⟨x, h⟩ : Subtype p) ∈ s } := Set.ext fun a => ⟨fun ⟨⟨_, ha'⟩, in_s, h_eq⟩ => h_eq ▸ ⟨ha', in_s⟩, fun ⟨ha, in_s⟩ => ⟨⟨a, ha⟩, in_s, rfl⟩⟩ #align subtype.coe_image Subtype.coe_image @[simp] theorem coe_image_of_subset {s t : Set α} (h : t ⊆ s) : (↑) '' { x : ↥s | ↑x ∈ t } = t := by ext x rw [mem_image] exact ⟨fun ⟨_, hx', hx⟩ => hx ▸ hx', fun hx => ⟨⟨x, h hx⟩, hx, rfl⟩⟩ #align subtype.coe_image_of_subset Subtype.coe_image_of_subset theorem range_coe {s : Set α} : range ((↑) : s → α) = s := by rw [← image_univ] simp [-image_univ, coe_image] #align subtype.range_coe Subtype.range_coe /-- A variant of `range_coe`. Try to use `range_coe` if possible. This version is useful when defining a new type that is defined as the subtype of something. In that case, the coercion doesn't fire anymore. -/ theorem range_val {s : Set α} : range (Subtype.val : s → α) = s := range_coe #align subtype.range_val Subtype.range_val /-- We make this the simp lemma instead of `range_coe`. The reason is that if we write for `s : Set α` the function `(↑) : s → α`, then the inferred implicit arguments of `(↑)` are `↑α (fun x ↦ x ∈ s)`. -/ @[simp] theorem range_coe_subtype {p : α → Prop} : range ((↑) : Subtype p → α) = { x | p x } := range_coe #align subtype.range_coe_subtype Subtype.range_coe_subtype @[simp] theorem coe_preimage_self (s : Set α) : ((↑) : s → α) ⁻¹' s = univ := by rw [← preimage_range, range_coe] #align subtype.coe_preimage_self Subtype.coe_preimage_self theorem range_val_subtype {p : α → Prop} : range (Subtype.val : Subtype p → α) = { x | p x } := range_coe #align subtype.range_val_subtype Subtype.range_val_subtype theorem coe_image_subset (s : Set α) (t : Set s) : ((↑) : s → α) '' t ⊆ s := fun x ⟨y, _, yvaleq⟩ => by rw [← yvaleq]; exact y.property #align subtype.coe_image_subset Subtype.coe_image_subset theorem coe_image_univ (s : Set α) : ((↑) : s → α) '' Set.univ = s := image_univ.trans range_coe #align subtype.coe_image_univ Subtype.coe_image_univ @[simp] theorem image_preimage_coe (s t : Set α) : ((↑) : s → α) '' (((↑) : s → α) ⁻¹' t) = t ∩ s := image_preimage_eq_inter_range.trans <| congr_arg _ range_coe #align subtype.image_preimage_coe Subtype.image_preimage_coe theorem image_preimage_val (s t : Set α) : (Subtype.val : s → α) '' (Subtype.val ⁻¹' t) = t ∩ s := image_preimage_coe s t #align subtype.image_preimage_val Subtype.image_preimage_val theorem preimage_coe_eq_preimage_coe_iff {s t u : Set α} : ((↑) : s → α) ⁻¹' t = ((↑) : s → α) ⁻¹' u ↔ t ∩ s = u ∩ s := by rw [← image_preimage_coe, ← image_preimage_coe, coe_injective.image_injective.eq_iff] #align subtype.preimage_coe_eq_preimage_coe_iff Subtype.preimage_coe_eq_preimage_coe_iff -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_inter_self (s t : Set α) : ((↑) : s → α) ⁻¹' (t ∩ s) = ((↑) : s → α) ⁻¹' t := by rw [preimage_coe_eq_preimage_coe_iff, inter_assoc, inter_self] #align subtype.preimage_coe_inter_self Subtype.preimage_coe_inter_self theorem preimage_val_eq_preimage_val_iff (s t u : Set α) : (Subtype.val : s → α) ⁻¹' t = Subtype.val ⁻¹' u ↔ t ∩ s = u ∩ s := preimage_coe_eq_preimage_coe_iff #align subtype.preimage_val_eq_preimage_val_iff Subtype.preimage_val_eq_preimage_val_iff theorem exists_set_subtype {t : Set α} (p : Set α → Prop) : (∃ s : Set t, p (((↑) : t → α) '' s)) ↔ ∃ s : Set α, s ⊆ t ∧ p s := by rw [← exists_subset_range_and_iff, range_coe] #align subtype.exists_set_subtype Subtype.exists_set_subtype theorem forall_set_subtype {t : Set α} (p : Set α → Prop) : (∀ s : Set t, p (((↑) : t → α) '' s)) ↔ ∀ s : Set α, s ⊆ t → p s := by rw [← forall_subset_range_iff, range_coe] theorem preimage_coe_nonempty {s t : Set α} : (((↑) : s → α) ⁻¹' t).Nonempty ↔ (s ∩ t).Nonempty := by rw [inter_comm, ← image_preimage_coe, nonempty_image_iff] #align subtype.preimage_coe_nonempty Subtype.preimage_coe_nonempty theorem preimage_coe_eq_empty {s t : Set α} : ((↑) : s → α) ⁻¹' t = ∅ ↔ s ∩ t = ∅ := by simp [← not_nonempty_iff_eq_empty, preimage_coe_nonempty] #align subtype.preimage_coe_eq_empty Subtype.preimage_coe_eq_empty -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_compl (s : Set α) : ((↑) : s → α) ⁻¹' sᶜ = ∅ := preimage_coe_eq_empty.2 (inter_compl_self s) #align subtype.preimage_coe_compl Subtype.preimage_coe_compl @[simp] theorem preimage_coe_compl' (s : Set α) : (fun x : (sᶜ : Set α) => (x : α)) ⁻¹' s = ∅ := preimage_coe_eq_empty.2 (compl_inter_self s) #align subtype.preimage_coe_compl' Subtype.preimage_coe_compl' end Subtype /-! ### Images and preimages on `Option` -/ open Set namespace Option theorem injective_iff {α β} {f : Option α → β} : Injective f ↔ Injective (f ∘ some) ∧ f none ∉ range (f ∘ some) := by simp only [mem_range, not_exists, (· ∘ ·)] refine' ⟨fun hf => ⟨hf.comp (Option.some_injective _), fun x => hf.ne <| Option.some_ne_none _⟩, _⟩ rintro ⟨h_some, h_none⟩ (_ | a) (_ | b) hab exacts [rfl, (h_none _ hab.symm).elim, (h_none _ hab).elim, congr_arg some (h_some hab)] #align option.injective_iff Option.injective_iff theorem range_eq {α β} (f : Option α → β) : range f = insert (f none) (range (f ∘ some)) := Set.ext fun _ => Option.exists.trans <| eq_comm.or Iff.rfl #align option.range_eq Option.range_eq end Option theorem WithBot.range_eq {α β} (f : WithBot α → β) : range f = insert (f ⊥) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_bot.range_eq WithBot.range_eq theorem WithTop.range_eq {α β} (f : WithTop α → β) : range f = insert (f ⊤) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_top.range_eq WithTop.range_eq namespace Set open Function /-! ### Injectivity and surjectivity lemmas for image and preimage -/ section ImagePreimage variable {α : Type u} {β : Type v} {f : α → β} @[simp] theorem preimage_injective : Injective (preimage f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.preimage_injective⟩ obtain ⟨x, hx⟩ : (f ⁻¹' {y}).Nonempty := by rw [h.nonempty_apply_iff preimage_empty] apply singleton_nonempty exact ⟨x, hx⟩ #align set.preimage_injective Set.preimage_injective @[simp] theorem preimage_surjective : Surjective (preimage f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.preimage_surjective⟩ cases' h {x} with s hs; have := mem_singleton x rwa [← hs, mem_preimage, hx, ← mem_preimage, hs, mem_singleton_iff, eq_comm] at this #align set.preimage_surjective Set.preimage_surjective @[simp] theorem image_surjective : Surjective (image f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.image_surjective⟩ cases' h {y} with s hs have := mem_singleton y; rw [← hs] at this; rcases this with ⟨x, _, hx⟩ exact ⟨x, hx⟩ #align set.image_surjective Set.image_surjective @[simp] theorem image_injective : Injective (image f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.image_injective⟩ rw [← singleton_eq_singleton_iff]; apply h rw [image_singleton, image_singleton, hx] #align set.image_injective Set.image_injective theorem preimage_eq_iff_eq_image {f : α → β} (hf : Bijective f) {s t} : f ⁻¹' s = t ↔ s = f '' t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.preimage_eq_iff_eq_image Set.preimage_eq_iff_eq_image theorem eq_preimage_iff_image_eq {f : α → β} (hf : Bijective f) {s t} : s = f ⁻¹' t ↔ f '' s = t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.eq_preimage_iff_image_eq Set.eq_preimage_iff_image_eq end ImagePreimage end Set /-! ### Disjoint lemmas for image and preimage -/ section Disjoint variable {α β γ : Type*} {f : α → β} {s t : Set α} theorem Disjoint.preimage (f : α → β) {s t : Set β} (h : Disjoint s t) : Disjoint (f ⁻¹' s) (f ⁻¹' t) := disjoint_iff_inf_le.mpr fun _ hx => h.le_bot hx #align disjoint.preimage Disjoint.preimage namespace Set theorem disjoint_image_image {f : β → α} {g : γ → α} {s : Set β} {t : Set γ} (h : ∀ b ∈ s, ∀ c ∈ t, f b ≠ g c) : Disjoint (f '' s) (g '' t) := disjoint_iff_inf_le.mpr <| by rintro a ⟨⟨b, hb, eq⟩, c, hc, rfl⟩; exact h b hb c hc eq #align set.disjoint_image_image Set.disjoint_image_image theorem disjoint_image_of_injective (hf : Injective f) {s t : Set α} (hd : Disjoint s t) : Disjoint (f '' s) (f '' t) := disjoint_image_image fun _ hx _ hy => hf.ne fun H => Set.disjoint_iff.1 hd ⟨hx, H.symm ▸ hy⟩ #align set.disjoint_image_of_injective Set.disjoint_image_of_injective theorem _root_.Disjoint.of_image (h : Disjoint (f '' s) (f '' t)) : Disjoint s t := disjoint_iff_inf_le.mpr fun _ hx => disjoint_left.1 h (mem_image_of_mem _ hx.1) (mem_image_of_mem _ hx.2) #align disjoint.of_image Disjoint.of_image @[simp] theorem disjoint_image_iff (hf : Injective f) : Disjoint (f '' s) (f '' t) ↔ Disjoint s t := ⟨Disjoint.of_image, disjoint_image_of_injective hf⟩ #align set.disjoint_image_iff Set.disjoint_image_iff theorem _root_.Disjoint.of_preimage (hf : Surjective f) {s t : Set β} (h : Disjoint (f ⁻¹' s) (f ⁻¹' t)) : Disjoint s t := by rw [disjoint_iff_inter_eq_empty, ← image_preimage_eq (_ ∩ _) hf, preimage_inter, h.inter_eq, image_empty] #align disjoint.of_preimage Disjoint.of_preimage @[simp] theorem disjoint_preimage_iff (hf : Surjective f) {s t : Set β} : Disjoint (f ⁻¹' s) (f ⁻¹' t) ↔ Disjoint s t := ⟨Disjoint.of_preimage hf, Disjoint.preimage _⟩ #align set.disjoint_preimage_iff Set.disjoint_preimage_iff theorem preimage_eq_empty {s : Set β} (h : Disjoint s (range f)) : f ⁻¹' s = ∅ := by simpa using h.preimage f #align set.preimage_eq_empty Set.preimage_eq_empty theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢ intro y hy x hx rw [← hx] at hy exact h x hy, preimage_eq_empty⟩ #align set.preimage_eq_empty_iff Set.preimage_eq_empty_iff end Set end Disjoint section Sigma variable {α : Type*} {β : α → Type*} {i j : α} {s : Set (β i)} lemma sigma_mk_preimage_image' (h : i ≠ j) : Sigma.mk j ⁻¹' (Sigma.mk i '' s) = ∅ := by
simp [image, h]
lemma sigma_mk_preimage_image' (h : i ≠ j) : Sigma.mk j ⁻¹' (Sigma.mk i '' s) = ∅ := by
Mathlib.Data.Set.Image.1671_0.IJFiTzmYGOCpPSd
lemma sigma_mk_preimage_image' (h : i ≠ j) : Sigma.mk j ⁻¹' (Sigma.mk i '' s) = ∅
Mathlib_Data_Set_Image
α : Type u_1 β : α → Type u_2 i j : α s : Set (β i) ⊢ Sigma.mk i ⁻¹' (Sigma.mk i '' s) = s
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ import Mathlib.Data.Set.Basic #align_import data.set.image from "leanprover-community/mathlib"@"001ffdc42920050657fd45bd2b8bfbec8eaaeb29" /-! # Images and preimages of sets ## Main definitions * `preimage f t : Set α` : the preimage f⁻¹(t) (written `f ⁻¹' t` in Lean) of a subset of β. * `range f : Set β` : the image of `univ` under `f`. Also works for `{p : Prop} (f : p → α)` (unlike `image`) ## Notation * `f ⁻¹' t` for `Set.preimage f t` * `f '' s` for `Set.image f s` ## Tags set, sets, image, preimage, pre-image, range -/ set_option autoImplicit true universe u v open Function Set namespace Set variable {α β γ : Type*} {ι ι' : Sort*} /-! ### Inverse image -/ /-- The preimage of `s : Set β` by `f : α → β`, written `f ⁻¹' s`, is the set of `x : α` such that `f x ∈ s`. -/ def preimage {α : Type u} {β : Type v} (f : α → β) (s : Set β) : Set α := { x | f x ∈ s } #align set.preimage Set.preimage /-- `f ⁻¹' t` denotes the preimage of `t : Set β` under the function `f : α → β`. -/ infixl:80 " ⁻¹' " => preimage section Preimage variable {f : α → β} {g : β → γ} @[simp] theorem preimage_empty : f ⁻¹' ∅ = ∅ := rfl #align set.preimage_empty Set.preimage_empty @[simp, mfld_simps] theorem mem_preimage {s : Set β} {a : α} : a ∈ f ⁻¹' s ↔ f a ∈ s := Iff.rfl #align set.mem_preimage Set.mem_preimage theorem preimage_congr {f g : α → β} {s : Set β} (h : ∀ x : α, f x = g x) : f ⁻¹' s = g ⁻¹' s := by congr with x simp [h] #align set.preimage_congr Set.preimage_congr @[gcongr] theorem preimage_mono {s t : Set β} (h : s ⊆ t) : f ⁻¹' s ⊆ f ⁻¹' t := fun _ hx => h hx #align set.preimage_mono Set.preimage_mono @[simp, mfld_simps] theorem preimage_univ : f ⁻¹' univ = univ := rfl #align set.preimage_univ Set.preimage_univ theorem subset_preimage_univ {s : Set α} : s ⊆ f ⁻¹' univ := subset_univ _ #align set.subset_preimage_univ Set.subset_preimage_univ @[simp, mfld_simps] theorem preimage_inter {s t : Set β} : f ⁻¹' (s ∩ t) = f ⁻¹' s ∩ f ⁻¹' t := rfl #align set.preimage_inter Set.preimage_inter @[simp] theorem preimage_union {s t : Set β} : f ⁻¹' (s ∪ t) = f ⁻¹' s ∪ f ⁻¹' t := rfl #align set.preimage_union Set.preimage_union @[simp] theorem preimage_compl {s : Set β} : f ⁻¹' sᶜ = (f ⁻¹' s)ᶜ := rfl #align set.preimage_compl Set.preimage_compl @[simp] theorem preimage_diff (f : α → β) (s t : Set β) : f ⁻¹' (s \ t) = f ⁻¹' s \ f ⁻¹' t := rfl #align set.preimage_diff Set.preimage_diff @[simp] lemma preimage_symmDiff {f : α → β} (s t : Set β) : f ⁻¹' (s ∆ t) = (f ⁻¹' s) ∆ (f ⁻¹' t) := rfl #align set.preimage_symm_diff Set.preimage_symmDiff @[simp] theorem preimage_ite (f : α → β) (s t₁ t₂ : Set β) : f ⁻¹' s.ite t₁ t₂ = (f ⁻¹' s).ite (f ⁻¹' t₁) (f ⁻¹' t₂) := rfl #align set.preimage_ite Set.preimage_ite @[simp] theorem preimage_setOf_eq {p : α → Prop} {f : β → α} : f ⁻¹' { a | p a } = { a | p (f a) } := rfl #align set.preimage_set_of_eq Set.preimage_setOf_eq @[simp] theorem preimage_id_eq : preimage (id : α → α) = id := rfl #align set.preimage_id_eq Set.preimage_id_eq @[mfld_simps] theorem preimage_id {s : Set α} : id ⁻¹' s = s := rfl #align set.preimage_id Set.preimage_id @[simp, mfld_simps] theorem preimage_id' {s : Set α} : (fun x => x) ⁻¹' s = s := rfl #align set.preimage_id' Set.preimage_id' @[simp] theorem preimage_const_of_mem {b : β} {s : Set β} (h : b ∈ s) : (fun _ : α => b) ⁻¹' s = univ := eq_univ_of_forall fun _ => h #align set.preimage_const_of_mem Set.preimage_const_of_mem @[simp] theorem preimage_const_of_not_mem {b : β} {s : Set β} (h : b ∉ s) : (fun _ : α => b) ⁻¹' s = ∅ := eq_empty_of_subset_empty fun _ hx => h hx #align set.preimage_const_of_not_mem Set.preimage_const_of_not_mem theorem preimage_const (b : β) (s : Set β) [Decidable (b ∈ s)] : (fun _ : α => b) ⁻¹' s = if b ∈ s then univ else ∅ := by split_ifs with hb exacts [preimage_const_of_mem hb, preimage_const_of_not_mem hb] #align set.preimage_const Set.preimage_const /-- If preimage of each singleton under `f : α → β` is either empty or the whole type, then `f` is a constant. -/ lemma exists_eq_const_of_preimage_singleton [Nonempty β] {f : α → β} (hf : ∀ b : β, f ⁻¹' {b} = ∅ ∨ f ⁻¹' {b} = univ) : ∃ b, f = const α b := by rcases em (∃ b, f ⁻¹' {b} = univ) with ⟨b, hb⟩ | hf' · exact ⟨b, funext fun x ↦ eq_univ_iff_forall.1 hb x⟩ · have : ∀ x b, f x ≠ b := fun x b ↦ eq_empty_iff_forall_not_mem.1 ((hf b).resolve_right fun h ↦ hf' ⟨b, h⟩) x exact ⟨Classical.arbitrary β, funext fun x ↦ absurd rfl (this x _)⟩ theorem preimage_comp {s : Set γ} : g ∘ f ⁻¹' s = f ⁻¹' (g ⁻¹' s) := rfl #align set.preimage_comp Set.preimage_comp theorem preimage_comp_eq : preimage (g ∘ f) = preimage f ∘ preimage g := rfl #align set.preimage_comp_eq Set.preimage_comp_eq theorem preimage_iterate_eq {f : α → α} {n : ℕ} : Set.preimage f^[n] = (Set.preimage f)^[n] := by induction' n with n ih; · simp rw [iterate_succ, iterate_succ', preimage_comp_eq, ih] #align set.preimage_iterate_eq Set.preimage_iterate_eq theorem preimage_preimage {g : β → γ} {f : α → β} {s : Set γ} : f ⁻¹' (g ⁻¹' s) = (fun x => g (f x)) ⁻¹' s := preimage_comp.symm #align set.preimage_preimage Set.preimage_preimage theorem eq_preimage_subtype_val_iff {p : α → Prop} {s : Set (Subtype p)} {t : Set α} : s = Subtype.val ⁻¹' t ↔ ∀ (x) (h : p x), (⟨x, h⟩ : Subtype p) ∈ s ↔ x ∈ t := ⟨fun s_eq x h => by rw [s_eq] simp, fun h => ext fun ⟨x, hx⟩ => by simp [h]⟩ #align set.eq_preimage_subtype_val_iff Set.eq_preimage_subtype_val_iff theorem nonempty_of_nonempty_preimage {s : Set β} {f : α → β} (hf : (f ⁻¹' s).Nonempty) : s.Nonempty := let ⟨x, hx⟩ := hf ⟨f x, hx⟩ #align set.nonempty_of_nonempty_preimage Set.nonempty_of_nonempty_preimage @[simp] theorem preimage_singleton_true (p : α → Prop) : p ⁻¹' {True} = {a | p a} := by ext; simp #align set.preimage_singleton_true Set.preimage_singleton_true @[simp] theorem preimage_singleton_false (p : α → Prop) : p ⁻¹' {False} = {a | ¬p a} := by ext; simp #align set.preimage_singleton_false Set.preimage_singleton_false theorem preimage_subtype_coe_eq_compl {s u v : Set α} (hsuv : s ⊆ u ∪ v) (H : s ∩ (u ∩ v) = ∅) : ((↑) : s → α) ⁻¹' u = ((↑) ⁻¹' v)ᶜ := by ext ⟨x, x_in_s⟩ constructor · intro x_in_u x_in_v exact eq_empty_iff_forall_not_mem.mp H x ⟨x_in_s, ⟨x_in_u, x_in_v⟩⟩ · intro hx exact Or.elim (hsuv x_in_s) id fun hx' => hx.elim hx' #align set.preimage_subtype_coe_eq_compl Set.preimage_subtype_coe_eq_compl end Preimage /-! ### Image of a set under a function -/ section Image variable {f : α → β} {s t : Set α} -- Porting note: `Set.image` is already defined in `Init.Set` #align set.image Set.image /-- `f '' s` denotes the image of `s : Set α` under the function `f : α → β`. -/ infixl:80 " '' " => image theorem mem_image_iff_bex {f : α → β} {s : Set α} {y : β} : y ∈ f '' s ↔ ∃ (x : _) (_ : x ∈ s), f x = y := bex_def.symm #align set.mem_image_iff_bex Set.mem_image_iff_bex @[simp] theorem mem_image (f : α → β) (s : Set α) (y : β) : y ∈ f '' s ↔ ∃ x ∈ s, f x = y := Iff.rfl #align set.mem_image Set.mem_image theorem image_eta (f : α → β) : f '' s = (fun x => f x) '' s := rfl #align set.image_eta Set.image_eta @[mfld_simps] theorem mem_image_of_mem (f : α → β) {x : α} {a : Set α} (h : x ∈ a) : f x ∈ f '' a := ⟨_, h, rfl⟩ #align set.mem_image_of_mem Set.mem_image_of_mem theorem _root_.Function.Injective.mem_set_image {f : α → β} (hf : Injective f) {s : Set α} {a : α} : f a ∈ f '' s ↔ a ∈ s := ⟨fun ⟨_, hb, Eq⟩ => hf Eq ▸ hb, mem_image_of_mem f⟩ #align function.injective.mem_set_image Function.Injective.mem_set_image theorem ball_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∀ y ∈ f '' s, p y) ↔ ∀ x ∈ s, p (f x) := by simp #align set.ball_image_iff Set.ball_image_iff theorem ball_image_of_ball {f : α → β} {s : Set α} {p : β → Prop} (h : ∀ x ∈ s, p (f x)) : ∀ y ∈ f '' s, p y := ball_image_iff.2 h #align set.ball_image_of_ball Set.ball_image_of_ball theorem bex_image_iff {f : α → β} {s : Set α} {p : β → Prop} : (∃ y ∈ f '' s, p y) ↔ ∃ x ∈ s, p (f x) := by simp #align set.bex_image_iff Set.bex_image_iff theorem mem_image_elim {f : α → β} {s : Set α} {C : β → Prop} (h : ∀ x : α, x ∈ s → C (f x)) : ∀ {y : β}, y ∈ f '' s → C y | _, ⟨a, a_in, rfl⟩ => h a a_in #align set.mem_image_elim Set.mem_image_elim theorem mem_image_elim_on {f : α → β} {s : Set α} {C : β → Prop} {y : β} (h_y : y ∈ f '' s) (h : ∀ x : α, x ∈ s → C (f x)) : C y := mem_image_elim h h_y #align set.mem_image_elim_on Set.mem_image_elim_on -- Porting note: used to be `safe` @[congr] theorem image_congr {f g : α → β} {s : Set α} (h : ∀ a ∈ s, f a = g a) : f '' s = g '' s := by ext x rw [mem_image, mem_image] exact { mp := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩, mpr := by rintro ⟨a, ha1, ha2⟩ exact ⟨a, ⟨ha1, (h a ha1) ▸ ha2⟩⟩ } -- safe [ext_iff, iff_def] #align set.image_congr Set.image_congr /-- A common special case of `image_congr` -/ theorem image_congr' {f g : α → β} {s : Set α} (h : ∀ x : α, f x = g x) : f '' s = g '' s := image_congr fun x _ => h x #align set.image_congr' Set.image_congr' @[gcongr] lemma image_mono (h : s ⊆ t) : f '' s ⊆ f '' t := by rintro - ⟨a, ha, rfl⟩; exact mem_image_of_mem f (h ha) theorem image_comp (f : β → γ) (g : α → β) (a : Set α) : f ∘ g '' a = f '' (g '' a) := Subset.antisymm (ball_image_of_ball fun _ ha => mem_image_of_mem _ <| mem_image_of_mem _ ha) (ball_image_of_ball <| ball_image_of_ball fun _ ha => mem_image_of_mem _ ha) #align set.image_comp Set.image_comp theorem image_comp_eq {g : β → γ} : image (g ∘ f) = image g ∘ image f := by ext; simp /-- A variant of `image_comp`, useful for rewriting -/ theorem image_image (g : β → γ) (f : α → β) (s : Set α) : g '' (f '' s) = (fun x => g (f x)) '' s := (image_comp g f s).symm #align set.image_image Set.image_image theorem image_comm {β'} {f : β → γ} {g : α → β} {f' : α → β'} {g' : β' → γ} (h_comm : ∀ a, f (g a) = g' (f' a)) : (s.image g).image f = (s.image f').image g' := by simp_rw [image_image, h_comm] #align set.image_comm Set.image_comm theorem _root_.Function.Semiconj.set_image {f : α → β} {ga : α → α} {gb : β → β} (h : Function.Semiconj f ga gb) : Function.Semiconj (image f) (image ga) (image gb) := fun _ => image_comm h #align function.semiconj.set_image Function.Semiconj.set_image theorem _root_.Function.Commute.set_image {f g : α → α} (h : Function.Commute f g) : Function.Commute (image f) (image g) := Function.Semiconj.set_image h #align function.commute.set_image Function.Commute.set_image /-- Image is monotone with respect to `⊆`. See `Set.monotone_image` for the statement in terms of `≤`. -/ @[gcongr] theorem image_subset {a b : Set α} (f : α → β) (h : a ⊆ b) : f '' a ⊆ f '' b := by simp only [subset_def, mem_image] exact fun x => fun ⟨w, h1, h2⟩ => ⟨w, h h1, h2⟩ #align set.image_subset Set.image_subset /-- `Set.image` is monotone. See `Set.image_subset` for the statement in terms of `⊆`. -/ lemma monotone_image {f : α → β} : Monotone (image f) := fun _ _ => image_subset _ #align set.monotone_image Set.monotone_image theorem image_union (f : α → β) (s t : Set α) : f '' (s ∪ t) = f '' s ∪ f '' t := ext fun x => ⟨by rintro ⟨a, h | h, rfl⟩ <;> [left; right] <;> exact ⟨_, h, rfl⟩, by rintro (⟨a, h, rfl⟩ | ⟨a, h, rfl⟩) <;> refine' ⟨_, _, rfl⟩ <;> [left; right] <;> exact h⟩ #align set.image_union Set.image_union @[simp] theorem image_empty (f : α → β) : f '' ∅ = ∅ := by ext simp #align set.image_empty Set.image_empty theorem image_inter_subset (f : α → β) (s t : Set α) : f '' (s ∩ t) ⊆ f '' s ∩ f '' t := subset_inter (image_subset _ <| inter_subset_left _ _) (image_subset _ <| inter_subset_right _ _) #align set.image_inter_subset Set.image_inter_subset theorem image_inter_on {f : α → β} {s t : Set α} (h : ∀ x ∈ t, ∀ y ∈ s, f x = f y → x = y) : f '' (s ∩ t) = f '' s ∩ f '' t := (image_inter_subset _ _ _).antisymm fun b ⟨⟨a₁, ha₁, h₁⟩, ⟨a₂, ha₂, h₂⟩⟩ ↦ have : a₂ = a₁ := h _ ha₂ _ ha₁ (by simp [*]) ⟨a₁, ⟨ha₁, this ▸ ha₂⟩, h₁⟩ #align set.image_inter_on Set.image_inter_on theorem image_inter {f : α → β} {s t : Set α} (H : Injective f) : f '' (s ∩ t) = f '' s ∩ f '' t := image_inter_on fun _ _ _ _ h => H h #align set.image_inter Set.image_inter theorem image_univ_of_surjective {ι : Type*} {f : ι → β} (H : Surjective f) : f '' univ = univ := eq_univ_of_forall <| by simpa [image] #align set.image_univ_of_surjective Set.image_univ_of_surjective @[simp] theorem image_singleton {f : α → β} {a : α} : f '' {a} = {f a} := by ext simp [image, eq_comm] #align set.image_singleton Set.image_singleton @[simp] theorem Nonempty.image_const {s : Set α} (hs : s.Nonempty) (a : β) : (fun _ => a) '' s = {a} := ext fun _ => ⟨fun ⟨_, _, h⟩ => h ▸ mem_singleton _, fun h => (eq_of_mem_singleton h).symm ▸ hs.imp fun _ hy => ⟨hy, rfl⟩⟩ #align set.nonempty.image_const Set.Nonempty.image_const @[simp, mfld_simps] theorem image_eq_empty {α β} {f : α → β} {s : Set α} : f '' s = ∅ ↔ s = ∅ := by simp only [eq_empty_iff_forall_not_mem] exact ⟨fun H a ha => H _ ⟨_, ha, rfl⟩, fun H b ⟨_, ha, _⟩ => H _ ha⟩ #align set.image_eq_empty Set.image_eq_empty -- Porting note: `compl` is already defined in `Init.Set` theorem preimage_compl_eq_image_compl [BooleanAlgebra α] (S : Set α) : HasCompl.compl ⁻¹' S = HasCompl.compl '' S := Set.ext fun x => ⟨fun h => ⟨xᶜ, h, compl_compl x⟩, fun h => Exists.elim h fun _ hy => (compl_eq_comm.mp hy.2).symm.subst hy.1⟩ #align set.preimage_compl_eq_image_compl Set.preimage_compl_eq_image_compl theorem mem_compl_image [BooleanAlgebra α] (t : α) (S : Set α) : t ∈ HasCompl.compl '' S ↔ tᶜ ∈ S := by simp [← preimage_compl_eq_image_compl] #align set.mem_compl_image Set.mem_compl_image @[simp] theorem image_id_eq : image (id : α → α) = id := by ext; simp /-- A variant of `image_id` -/ @[simp] theorem image_id' (s : Set α) : (fun x => x) '' s = s := by ext simp #align set.image_id' Set.image_id' theorem image_id (s : Set α) : id '' s = s := by simp #align set.image_id Set.image_id lemma image_iterate_eq {f : α → α} {n : ℕ} : image (f^[n]) = (image f)^[n] := by induction' n with n ih; · simp rw [iterate_succ', iterate_succ',← ih, image_comp_eq] theorem compl_compl_image [BooleanAlgebra α] (S : Set α) : HasCompl.compl '' (HasCompl.compl '' S) = S := by rw [← image_comp, compl_comp_compl, image_id] #align set.compl_compl_image Set.compl_compl_image theorem image_insert_eq {f : α → β} {a : α} {s : Set α} : f '' insert a s = insert (f a) (f '' s) := by ext simp [and_or_left, exists_or, eq_comm, or_comm, and_comm] #align set.image_insert_eq Set.image_insert_eq theorem image_pair (f : α → β) (a b : α) : f '' {a, b} = {f a, f b} := by simp only [image_insert_eq, image_singleton] #align set.image_pair Set.image_pair theorem image_subset_preimage_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set α) : f '' s ⊆ g ⁻¹' s := fun _ ⟨a, h, e⟩ => e ▸ ((I a).symm ▸ h : g (f a) ∈ s) #align set.image_subset_preimage_of_inverse Set.image_subset_preimage_of_inverse theorem preimage_subset_image_of_inverse {f : α → β} {g : β → α} (I : LeftInverse g f) (s : Set β) : f ⁻¹' s ⊆ g '' s := fun b h => ⟨f b, h, I b⟩ #align set.preimage_subset_image_of_inverse Set.preimage_subset_image_of_inverse theorem image_eq_preimage_of_inverse {f : α → β} {g : β → α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : image f = preimage g := funext fun s => Subset.antisymm (image_subset_preimage_of_inverse h₁ s) (preimage_subset_image_of_inverse h₂ s) #align set.image_eq_preimage_of_inverse Set.image_eq_preimage_of_inverse theorem mem_image_iff_of_inverse {f : α → β} {g : β → α} {b : β} {s : Set α} (h₁ : LeftInverse g f) (h₂ : RightInverse g f) : b ∈ f '' s ↔ g b ∈ s := by rw [image_eq_preimage_of_inverse h₁ h₂]; rfl #align set.mem_image_iff_of_inverse Set.mem_image_iff_of_inverse theorem image_compl_subset {f : α → β} {s : Set α} (H : Injective f) : f '' sᶜ ⊆ (f '' s)ᶜ := Disjoint.subset_compl_left <| by simp [disjoint_iff_inf_le, ← image_inter H] #align set.image_compl_subset Set.image_compl_subset theorem subset_image_compl {f : α → β} {s : Set α} (H : Surjective f) : (f '' s)ᶜ ⊆ f '' sᶜ := compl_subset_iff_union.2 <| by rw [← image_union] simp [image_univ_of_surjective H] #align set.subset_image_compl Set.subset_image_compl theorem image_compl_eq {f : α → β} {s : Set α} (H : Bijective f) : f '' sᶜ = (f '' s)ᶜ := Subset.antisymm (image_compl_subset H.1) (subset_image_compl H.2) #align set.image_compl_eq Set.image_compl_eq theorem subset_image_diff (f : α → β) (s t : Set α) : f '' s \ f '' t ⊆ f '' (s \ t) := by rw [diff_subset_iff, ← image_union, union_diff_self] exact image_subset f (subset_union_right t s) #align set.subset_image_diff Set.subset_image_diff theorem subset_image_symmDiff : (f '' s) ∆ (f '' t) ⊆ f '' s ∆ t := (union_subset_union (subset_image_diff _ _ _) <| subset_image_diff _ _ _).trans (superset_of_eq (image_union _ _ _)) #align set.subset_image_symm_diff Set.subset_image_symmDiff theorem image_diff {f : α → β} (hf : Injective f) (s t : Set α) : f '' (s \ t) = f '' s \ f '' t := Subset.antisymm (Subset.trans (image_inter_subset _ _ _) <| inter_subset_inter_right _ <| image_compl_subset hf) (subset_image_diff f s t) #align set.image_diff Set.image_diff theorem image_symmDiff (hf : Injective f) (s t : Set α) : f '' s ∆ t = (f '' s) ∆ (f '' t) := by simp_rw [Set.symmDiff_def, image_union, image_diff hf] #align set.image_symm_diff Set.image_symmDiff theorem Nonempty.image (f : α → β) {s : Set α} : s.Nonempty → (f '' s).Nonempty | ⟨x, hx⟩ => ⟨f x, mem_image_of_mem f hx⟩ #align set.nonempty.image Set.Nonempty.image theorem Nonempty.of_image {f : α → β} {s : Set α} : (f '' s).Nonempty → s.Nonempty | ⟨_, x, hx, _⟩ => ⟨x, hx⟩ #align set.nonempty.of_image Set.Nonempty.of_image @[simp] theorem nonempty_image_iff {f : α → β} {s : Set α} : (f '' s).Nonempty ↔ s.Nonempty := ⟨Nonempty.of_image, fun h => h.image f⟩ #align set.nonempty_image_iff Set.nonempty_image_iff theorem Nonempty.preimage {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : Surjective f) : (f ⁻¹' s).Nonempty := let ⟨y, hy⟩ := hs let ⟨x, hx⟩ := hf y ⟨x, mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage Set.Nonempty.preimage instance (f : α → β) (s : Set α) [Nonempty s] : Nonempty (f '' s) := (Set.Nonempty.image f nonempty_of_nonempty_subtype).to_subtype /-- image and preimage are a Galois connection -/ @[simp] theorem image_subset_iff {s : Set α} {t : Set β} {f : α → β} : f '' s ⊆ t ↔ s ⊆ f ⁻¹' t := ball_image_iff #align set.image_subset_iff Set.image_subset_iff theorem image_preimage_subset (f : α → β) (s : Set β) : f '' (f ⁻¹' s) ⊆ s := image_subset_iff.2 Subset.rfl #align set.image_preimage_subset Set.image_preimage_subset theorem subset_preimage_image (f : α → β) (s : Set α) : s ⊆ f ⁻¹' (f '' s) := fun _ => mem_image_of_mem f #align set.subset_preimage_image Set.subset_preimage_image @[simp] theorem preimage_image_eq {f : α → β} (s : Set α) (h : Injective f) : f ⁻¹' (f '' s) = s := Subset.antisymm (fun _ ⟨_, hy, e⟩ => h e ▸ hy) (subset_preimage_image f s) #align set.preimage_image_eq Set.preimage_image_eq @[simp] theorem image_preimage_eq {f : α → β} (s : Set β) (h : Surjective f) : f '' (f ⁻¹' s) = s := Subset.antisymm (image_preimage_subset f s) fun x hx => let ⟨y, e⟩ := h x ⟨y, (e.symm ▸ hx : f y ∈ s), e⟩ #align set.image_preimage_eq Set.image_preimage_eq @[simp] theorem preimage_eq_preimage {f : β → α} (hf : Surjective f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := Iff.intro fun eq => by rw [← image_preimage_eq s hf, ← image_preimage_eq t hf, eq] fun eq => eq ▸ rfl #align set.preimage_eq_preimage Set.preimage_eq_preimage theorem image_inter_preimage (f : α → β) (s : Set α) (t : Set β) : f '' (s ∩ f ⁻¹' t) = f '' s ∩ t := by apply Subset.antisymm · calc f '' (s ∩ f ⁻¹' t) ⊆ f '' s ∩ f '' (f ⁻¹' t) := image_inter_subset _ _ _ _ ⊆ f '' s ∩ t := inter_subset_inter_right _ (image_preimage_subset f t) · rintro _ ⟨⟨x, h', rfl⟩, h⟩ exact ⟨x, ⟨h', h⟩, rfl⟩ #align set.image_inter_preimage Set.image_inter_preimage theorem image_preimage_inter (f : α → β) (s : Set α) (t : Set β) : f '' (f ⁻¹' t ∩ s) = t ∩ f '' s := by simp only [inter_comm, image_inter_preimage] #align set.image_preimage_inter Set.image_preimage_inter @[simp] theorem image_inter_nonempty_iff {f : α → β} {s : Set α} {t : Set β} : (f '' s ∩ t).Nonempty ↔ (s ∩ f ⁻¹' t).Nonempty := by rw [← image_inter_preimage, nonempty_image_iff] #align set.image_inter_nonempty_iff Set.image_inter_nonempty_iff theorem image_diff_preimage {f : α → β} {s : Set α} {t : Set β} : f '' (s \ f ⁻¹' t) = f '' s \ t := by simp_rw [diff_eq, ← preimage_compl, image_inter_preimage] #align set.image_diff_preimage Set.image_diff_preimage theorem compl_image : image (compl : Set α → Set α) = preimage compl := image_eq_preimage_of_inverse compl_compl compl_compl #align set.compl_image Set.compl_image theorem compl_image_set_of {p : Set α → Prop} : compl '' { s | p s } = { s | p sᶜ } := congr_fun compl_image p #align set.compl_image_set_of Set.compl_image_set_of theorem inter_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∩ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∩ t) := fun _ h => ⟨mem_image_of_mem _ h.left, h.right⟩ #align set.inter_preimage_subset Set.inter_preimage_subset theorem union_preimage_subset (s : Set α) (t : Set β) (f : α → β) : s ∪ f ⁻¹' t ⊆ f ⁻¹' (f '' s ∪ t) := fun _ h => Or.elim h (fun l => Or.inl <| mem_image_of_mem _ l) fun r => Or.inr r #align set.union_preimage_subset Set.union_preimage_subset theorem subset_image_union (f : α → β) (s : Set α) (t : Set β) : f '' (s ∪ f ⁻¹' t) ⊆ f '' s ∪ t := image_subset_iff.2 (union_preimage_subset _ _ _) #align set.subset_image_union Set.subset_image_union theorem preimage_subset_iff {A : Set α} {B : Set β} {f : α → β} : f ⁻¹' B ⊆ A ↔ ∀ a : α, f a ∈ B → a ∈ A := Iff.rfl #align set.preimage_subset_iff Set.preimage_subset_iff theorem image_eq_image {f : α → β} (hf : Injective f) : f '' s = f '' t ↔ s = t := Iff.symm <| (Iff.intro fun eq => eq ▸ rfl) fun eq => by rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, eq] #align set.image_eq_image Set.image_eq_image theorem image_subset_image_iff {f : α → β} (hf : Injective f) : f '' s ⊆ f '' t ↔ s ⊆ t := by refine' Iff.symm <| (Iff.intro (image_subset f)) fun h => _ rw [← preimage_image_eq s hf, ← preimage_image_eq t hf] exact preimage_mono h #align set.image_subset_image_iff Set.image_subset_image_iff theorem prod_quotient_preimage_eq_image [s : Setoid α] (g : Quotient s → β) {h : α → β} (Hh : h = g ∘ Quotient.mk'') (r : Set (β × β)) : { x : Quotient s × Quotient s | (g x.1, g x.2) ∈ r } = (fun a : α × α => (⟦a.1⟧, ⟦a.2⟧)) '' ((fun a : α × α => (h a.1, h a.2)) ⁻¹' r) := Hh.symm ▸ Set.ext fun ⟨a₁, a₂⟩ => ⟨Quot.induction_on₂ a₁ a₂ fun a₁ a₂ h => ⟨(a₁, a₂), h, rfl⟩, fun ⟨⟨b₁, b₂⟩, h₁, h₂⟩ => show (g a₁, g a₂) ∈ r from have h₃ : ⟦b₁⟧ = a₁ ∧ ⟦b₂⟧ = a₂ := Prod.ext_iff.1 h₂ h₃.1 ▸ h₃.2 ▸ h₁⟩ #align set.prod_quotient_preimage_eq_image Set.prod_quotient_preimage_eq_image theorem exists_image_iff (f : α → β) (x : Set α) (P : β → Prop) : (∃ a : f '' x, P a) ↔ ∃ a : x, P (f a) := ⟨fun ⟨a, h⟩ => ⟨⟨_, a.prop.choose_spec.1⟩, a.prop.choose_spec.2.symm ▸ h⟩, fun ⟨a, h⟩ => ⟨⟨_, _, a.prop, rfl⟩, h⟩⟩ #align set.exists_image_iff Set.exists_image_iff /-- Restriction of `f` to `s` factors through `s.imageFactorization f : s → f '' s`. -/ def imageFactorization (f : α → β) (s : Set α) : s → f '' s := fun p => ⟨f p.1, mem_image_of_mem f p.2⟩ #align set.image_factorization Set.imageFactorization theorem imageFactorization_eq {f : α → β} {s : Set α} : Subtype.val ∘ imageFactorization f s = f ∘ Subtype.val := funext fun _ => rfl #align set.image_factorization_eq Set.imageFactorization_eq theorem surjective_onto_image {f : α → β} {s : Set α} : Surjective (imageFactorization f s) := fun ⟨_, ⟨a, ha, rfl⟩⟩ => ⟨⟨a, ha⟩, rfl⟩ #align set.surjective_onto_image Set.surjective_onto_image /-- If the only elements outside `s` are those left fixed by `σ`, then mapping by `σ` has no effect. -/ theorem image_perm {s : Set α} {σ : Equiv.Perm α} (hs : { a : α | σ a ≠ a } ⊆ s) : σ '' s = s := by ext i obtain hi | hi := eq_or_ne (σ i) i · refine' ⟨_, fun h => ⟨i, h, hi⟩⟩ rintro ⟨j, hj, h⟩ rwa [σ.injective (hi.trans h.symm)] · refine' iff_of_true ⟨σ.symm i, hs fun h => hi _, σ.apply_symm_apply _⟩ (hs hi) convert congr_arg σ h <;> exact (σ.apply_symm_apply _).symm #align set.image_perm Set.image_perm end Image /-! ### Lemmas about the powerset and image. -/ /-- The powerset of `{a} ∪ s` is `𝒫 s` together with `{a} ∪ t` for each `t ∈ 𝒫 s`. -/ theorem powerset_insert (s : Set α) (a : α) : 𝒫 insert a s = 𝒫 s ∪ insert a '' 𝒫 s := by ext t simp_rw [mem_union, mem_image, mem_powerset_iff] constructor · intro h by_cases hs : a ∈ t · right refine' ⟨t \ {a}, _, _⟩ · rw [diff_singleton_subset_iff] assumption · rw [insert_diff_singleton, insert_eq_of_mem hs] · left exact (subset_insert_iff_of_not_mem hs).mp h · rintro (h | ⟨s', h₁, rfl⟩) · exact subset_trans h (subset_insert a s) · exact insert_subset_insert h₁ #align set.powerset_insert Set.powerset_insert /-! ### Lemmas about range of a function. -/ section Range variable {f : ι → α} {s t : Set α} /-- Range of a function. This function is more flexible than `f '' univ`, as the image requires that the domain is in Type and not an arbitrary Sort. -/ def range (f : ι → α) : Set α := { x | ∃ y, f y = x } #align set.range Set.range @[simp] theorem mem_range {x : α} : x ∈ range f ↔ ∃ y, f y = x := Iff.rfl #align set.mem_range Set.mem_range -- Porting note -- @[simp] `simp` can prove this @[mfld_simps] theorem mem_range_self (i : ι) : f i ∈ range f := ⟨i, rfl⟩ #align set.mem_range_self Set.mem_range_self theorem forall_range_iff {p : α → Prop} : (∀ a ∈ range f, p a) ↔ ∀ i, p (f i) := by simp #align set.forall_range_iff Set.forall_range_iff theorem forall_subtype_range_iff {p : range f → Prop} : (∀ a : range f, p a) ↔ ∀ i, p ⟨f i, mem_range_self _⟩ := ⟨fun H i => H _, fun H ⟨y, i, hi⟩ => by subst hi apply H⟩ #align set.forall_subtype_range_iff Set.forall_subtype_range_iff theorem exists_range_iff {p : α → Prop} : (∃ a ∈ range f, p a) ↔ ∃ i, p (f i) := by simp #align set.exists_range_iff Set.exists_range_iff theorem exists_range_iff' {p : α → Prop} : (∃ a, a ∈ range f ∧ p a) ↔ ∃ i, p (f i) := by simpa only [exists_prop] using exists_range_iff #align set.exists_range_iff' Set.exists_range_iff' theorem exists_subtype_range_iff {p : range f → Prop} : (∃ a : range f, p a) ↔ ∃ i, p ⟨f i, mem_range_self _⟩ := ⟨fun ⟨⟨a, i, hi⟩, ha⟩ => by subst a exact ⟨i, ha⟩, fun ⟨i, hi⟩ => ⟨_, hi⟩⟩ #align set.exists_subtype_range_iff Set.exists_subtype_range_iff theorem range_iff_surjective : range f = univ ↔ Surjective f := eq_univ_iff_forall #align set.range_iff_surjective Set.range_iff_surjective -- Porting note: Lean4 unfolds `Surjective` here, ruining dot notation alias ⟨_, _root_.Function.Surjective.range_eq⟩ := range_iff_surjective #align function.surjective.range_eq Function.Surjective.range_eq @[simp] theorem image_univ {f : α → β} : f '' univ = range f := by ext simp [image, range] #align set.image_univ Set.image_univ theorem image_subset_range (f : α → β) (s) : f '' s ⊆ range f := by rw [← image_univ]; exact image_subset _ (subset_univ _) #align set.image_subset_range Set.image_subset_range theorem mem_range_of_mem_image (f : α → β) (s) {x : β} (h : x ∈ f '' s) : x ∈ range f := image_subset_range f s h #align set.mem_range_of_mem_image Set.mem_range_of_mem_image theorem _root_.Nat.mem_range_succ (i : ℕ) : i ∈ range Nat.succ ↔ 0 < i := ⟨by rintro ⟨n, rfl⟩ exact Nat.succ_pos n, fun h => ⟨_, Nat.succ_pred_eq_of_pos h⟩⟩ #align nat.mem_range_succ Nat.mem_range_succ theorem Nonempty.preimage' {s : Set β} (hs : s.Nonempty) {f : α → β} (hf : s ⊆ range f) : (f ⁻¹' s).Nonempty := let ⟨_, hy⟩ := hs let ⟨x, hx⟩ := hf hy ⟨x, Set.mem_preimage.2 <| hx.symm ▸ hy⟩ #align set.nonempty.preimage' Set.Nonempty.preimage' theorem range_comp (g : α → β) (f : ι → α) : range (g ∘ f) = g '' range f := Subset.antisymm (forall_range_iff.mpr fun _ => mem_image_of_mem g (mem_range_self _)) (ball_image_iff.mpr <| forall_range_iff.mpr mem_range_self) #align set.range_comp Set.range_comp theorem range_subset_iff : range f ⊆ s ↔ ∀ y, f y ∈ s := forall_range_iff #align set.range_subset_iff Set.range_subset_iff theorem range_subset_range_iff_exists_comp {f : α → γ} {g : β → γ} : range f ⊆ range g ↔ ∃ h : α → β, f = g ∘ h := by simp only [range_subset_iff, mem_range, Classical.skolem, Function.funext_iff, (· ∘ ·), eq_comm] theorem range_eq_iff (f : α → β) (s : Set β) : range f = s ↔ (∀ a, f a ∈ s) ∧ ∀ b ∈ s, ∃ a, f a = b := by rw [← range_subset_iff] exact le_antisymm_iff #align set.range_eq_iff Set.range_eq_iff theorem range_comp_subset_range (f : α → β) (g : β → γ) : range (g ∘ f) ⊆ range g := by rw [range_comp]; apply image_subset_range #align set.range_comp_subset_range Set.range_comp_subset_range theorem range_nonempty_iff_nonempty : (range f).Nonempty ↔ Nonempty ι := ⟨fun ⟨_, x, _⟩ => ⟨x⟩, fun ⟨x⟩ => ⟨f x, mem_range_self x⟩⟩ #align set.range_nonempty_iff_nonempty Set.range_nonempty_iff_nonempty theorem range_nonempty [h : Nonempty ι] (f : ι → α) : (range f).Nonempty := range_nonempty_iff_nonempty.2 h #align set.range_nonempty Set.range_nonempty @[simp] theorem range_eq_empty_iff {f : ι → α} : range f = ∅ ↔ IsEmpty ι := by rw [← not_nonempty_iff, ← range_nonempty_iff_nonempty, not_nonempty_iff_eq_empty] #align set.range_eq_empty_iff Set.range_eq_empty_iff theorem range_eq_empty [IsEmpty ι] (f : ι → α) : range f = ∅ := range_eq_empty_iff.2 ‹_› #align set.range_eq_empty Set.range_eq_empty instance instNonemptyRange [Nonempty ι] (f : ι → α) : Nonempty (range f) := (range_nonempty f).to_subtype @[simp] theorem image_union_image_compl_eq_range (f : α → β) : f '' s ∪ f '' sᶜ = range f := by rw [← image_union, ← image_univ, ← union_compl_self] #align set.image_union_image_compl_eq_range Set.image_union_image_compl_eq_range theorem insert_image_compl_eq_range (f : α → β) (x : α) : insert (f x) (f '' {x}ᶜ) = range f := by rw [← image_insert_eq, insert_eq, union_compl_self, image_univ] #align set.insert_image_compl_eq_range Set.insert_image_compl_eq_range theorem image_preimage_eq_inter_range {f : α → β} {t : Set β} : f '' (f ⁻¹' t) = t ∩ range f := ext fun x => ⟨fun ⟨x, hx, HEq⟩ => HEq ▸ ⟨hx, mem_range_self _⟩, fun ⟨hx, ⟨y, h_eq⟩⟩ => h_eq ▸ mem_image_of_mem f <| show y ∈ f ⁻¹' t by rw [preimage, mem_setOf, h_eq]; exact hx⟩ #align set.image_preimage_eq_inter_range Set.image_preimage_eq_inter_range theorem image_preimage_eq_of_subset {f : α → β} {s : Set β} (hs : s ⊆ range f) : f '' (f ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, inter_eq_self_of_subset_left hs] #align set.image_preimage_eq_of_subset Set.image_preimage_eq_of_subset theorem image_preimage_eq_iff {f : α → β} {s : Set β} : f '' (f ⁻¹' s) = s ↔ s ⊆ range f := ⟨by intro h rw [← h] apply image_subset_range, image_preimage_eq_of_subset⟩ #align set.image_preimage_eq_iff Set.image_preimage_eq_iff theorem subset_range_iff_exists_image_eq {f : α → β} {s : Set β} : s ⊆ range f ↔ ∃ t, f '' t = s := ⟨fun h => ⟨_, image_preimage_eq_iff.2 h⟩, fun ⟨_, ht⟩ => ht ▸ image_subset_range _ _⟩ #align set.subset_range_iff_exists_image_eq Set.subset_range_iff_exists_image_eq theorem range_image (f : α → β) : range (image f) = 𝒫 range f := ext fun _ => subset_range_iff_exists_image_eq.symm #align set.range_image Set.range_image @[simp] theorem exists_subset_range_and_iff {f : α → β} {p : Set β → Prop} : (∃ s, s ⊆ range f ∧ p s) ↔ ∃ s, p (f '' s) := by rw [← exists_range_iff, range_image]; rfl #align set.exists_subset_range_and_iff Set.exists_subset_range_and_iff theorem exists_subset_range_iff {f : α → β} {p : Set β → Prop} : (∃ (s : _) (_ : s ⊆ range f), p s) ↔ ∃ s, p (f '' s) := by simp #align set.exists_subset_range_iff Set.exists_subset_range_iff theorem forall_subset_range_iff {f : α → β} {p : Set β → Prop} : (∀ s, s ⊆ range f → p s) ↔ ∀ s, p (f '' s) := by rw [← forall_range_iff, range_image]; rfl theorem preimage_subset_preimage_iff {s t : Set α} {f : β → α} (hs : s ⊆ range f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by constructor · intro h x hx rcases hs hx with ⟨y, rfl⟩ exact h hx intro h x; apply h #align set.preimage_subset_preimage_iff Set.preimage_subset_preimage_iff theorem preimage_eq_preimage' {s t : Set α} {f : β → α} (hs : s ⊆ range f) (ht : t ⊆ range f) : f ⁻¹' s = f ⁻¹' t ↔ s = t := by constructor · intro h apply Subset.antisymm · rw [← preimage_subset_preimage_iff hs, h] · rw [← preimage_subset_preimage_iff ht, h] rintro rfl; rfl #align set.preimage_eq_preimage' Set.preimage_eq_preimage' -- Porting note: -- @[simp] `simp` can prove this theorem preimage_inter_range {f : α → β} {s : Set β} : f ⁻¹' (s ∩ range f) = f ⁻¹' s := Set.ext fun x => and_iff_left ⟨x, rfl⟩ #align set.preimage_inter_range Set.preimage_inter_range -- Porting note: -- @[simp] `simp` can prove this theorem preimage_range_inter {f : α → β} {s : Set β} : f ⁻¹' (range f ∩ s) = f ⁻¹' s := by rw [inter_comm, preimage_inter_range] #align set.preimage_range_inter Set.preimage_range_inter theorem preimage_image_preimage {f : α → β} {s : Set β} : f ⁻¹' (f '' (f ⁻¹' s)) = f ⁻¹' s := by rw [image_preimage_eq_inter_range, preimage_inter_range] #align set.preimage_image_preimage Set.preimage_image_preimage @[simp, mfld_simps] theorem range_id : range (@id α) = univ := range_iff_surjective.2 surjective_id #align set.range_id Set.range_id @[simp, mfld_simps] theorem range_id' : (range fun x : α => x) = univ := range_id #align set.range_id' Set.range_id' @[simp] theorem _root_.Prod.range_fst [Nonempty β] : range (Prod.fst : α × β → α) = univ := Prod.fst_surjective.range_eq #align prod.range_fst Prod.range_fst @[simp] theorem _root_.Prod.range_snd [Nonempty α] : range (Prod.snd : α × β → β) = univ := Prod.snd_surjective.range_eq #align prod.range_snd Prod.range_snd @[simp] theorem range_eval {α : ι → Sort _} [∀ i, Nonempty (α i)] (i : ι) : range (eval i : (∀ i, α i) → α i) = univ := (surjective_eval i).range_eq #align set.range_eval Set.range_eval theorem range_inl : range (@Sum.inl α β) = {x | Sum.isLeft x} := by ext (_|_) <;> simp #align set.range_inl Set.range_inl theorem range_inr : range (@Sum.inr α β) = {x | Sum.isRight x} := by ext (_|_) <;> simp #align set.range_inr Set.range_inr theorem isCompl_range_inl_range_inr : IsCompl (range <| @Sum.inl α β) (range Sum.inr) := IsCompl.of_le (by rintro y ⟨⟨x₁, rfl⟩, ⟨x₂, h⟩⟩ exact Sum.noConfusion h) (by rintro (x | y) - <;> [left; right] <;> exact mem_range_self _) #align set.is_compl_range_inl_range_inr Set.isCompl_range_inl_range_inr @[simp] theorem range_inl_union_range_inr : range (Sum.inl : α → Sum α β) ∪ range Sum.inr = univ := isCompl_range_inl_range_inr.sup_eq_top #align set.range_inl_union_range_inr Set.range_inl_union_range_inr @[simp] theorem range_inl_inter_range_inr : range (Sum.inl : α → Sum α β) ∩ range Sum.inr = ∅ := isCompl_range_inl_range_inr.inf_eq_bot #align set.range_inl_inter_range_inr Set.range_inl_inter_range_inr @[simp] theorem range_inr_union_range_inl : range (Sum.inr : β → Sum α β) ∪ range Sum.inl = univ := isCompl_range_inl_range_inr.symm.sup_eq_top #align set.range_inr_union_range_inl Set.range_inr_union_range_inl @[simp] theorem range_inr_inter_range_inl : range (Sum.inr : β → Sum α β) ∩ range Sum.inl = ∅ := isCompl_range_inl_range_inr.symm.inf_eq_bot #align set.range_inr_inter_range_inl Set.range_inr_inter_range_inl @[simp] theorem preimage_inl_image_inr (s : Set β) : Sum.inl ⁻¹' (@Sum.inr α β '' s) = ∅ := by ext simp #align set.preimage_inl_image_inr Set.preimage_inl_image_inr @[simp] theorem preimage_inr_image_inl (s : Set α) : Sum.inr ⁻¹' (@Sum.inl α β '' s) = ∅ := by ext simp #align set.preimage_inr_image_inl Set.preimage_inr_image_inl @[simp] theorem preimage_inl_range_inr : Sum.inl ⁻¹' range (Sum.inr : β → Sum α β) = ∅ := by rw [← image_univ, preimage_inl_image_inr] #align set.preimage_inl_range_inr Set.preimage_inl_range_inr @[simp] theorem preimage_inr_range_inl : Sum.inr ⁻¹' range (Sum.inl : α → Sum α β) = ∅ := by rw [← image_univ, preimage_inr_image_inl] #align set.preimage_inr_range_inl Set.preimage_inr_range_inl @[simp] theorem compl_range_inl : (range (Sum.inl : α → Sum α β))ᶜ = range (Sum.inr : β → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr #align set.compl_range_inl Set.compl_range_inl @[simp] theorem compl_range_inr : (range (Sum.inr : β → Sum α β))ᶜ = range (Sum.inl : α → Sum α β) := IsCompl.compl_eq isCompl_range_inl_range_inr.symm #align set.compl_range_inr Set.compl_range_inr theorem image_preimage_inl_union_image_preimage_inr (s : Set (Sum α β)) : Sum.inl '' (Sum.inl ⁻¹' s) ∪ Sum.inr '' (Sum.inr ⁻¹' s) = s := by rw [image_preimage_eq_inter_range, image_preimage_eq_inter_range, ← inter_distrib_left, range_inl_union_range_inr, inter_univ] #align set.image_preimage_inl_union_image_preimage_inr Set.image_preimage_inl_union_image_preimage_inr @[simp] theorem range_quot_mk (r : α → α → Prop) : range (Quot.mk r) = univ := (surjective_quot_mk r).range_eq #align set.range_quot_mk Set.range_quot_mk @[simp] theorem range_quot_lift {r : ι → ι → Prop} (hf : ∀ x y, r x y → f x = f y) : range (Quot.lift f hf) = range f := ext fun _ => (surjective_quot_mk _).exists #align set.range_quot_lift Set.range_quot_lift -- Porting note: the `Setoid α` instance is not being filled in @[simp] theorem range_quotient_mk [sa : Setoid α] : (range (α := Quotient sa) fun x : α => ⟦x⟧) = univ := range_quot_mk _ #align set.range_quotient_mk Set.range_quotient_mk @[simp] theorem range_quotient_lift [s : Setoid ι] (hf) : range (Quotient.lift f hf : Quotient s → α) = range f := range_quot_lift _ #align set.range_quotient_lift Set.range_quotient_lift @[simp] theorem range_quotient_mk' {s : Setoid α} : range (Quotient.mk' : α → Quotient s) = univ := range_quot_mk _ #align set.range_quotient_mk' Set.range_quotient_mk' @[simp] lemma Quotient.range_mk'' {sa : Setoid α} : range (Quotient.mk'' (s₁ := sa)) = univ := range_quotient_mk @[simp] theorem range_quotient_lift_on' {s : Setoid ι} (hf) : (range fun x : Quotient s => Quotient.liftOn' x f hf) = range f := range_quot_lift _ #align set.range_quotient_lift_on' Set.range_quotient_lift_on' instance canLift (c) (p) [CanLift α β c p] : CanLift (Set α) (Set β) (c '' ·) fun s => ∀ x ∈ s, p x where prf _ hs := subset_range_iff_exists_image_eq.mp fun x hx => CanLift.prf _ (hs x hx) #align set.can_lift Set.canLift theorem range_const_subset {c : α} : (range fun _ : ι => c) ⊆ {c} := range_subset_iff.2 fun _ => rfl #align set.range_const_subset Set.range_const_subset @[simp] theorem range_const : ∀ [Nonempty ι] {c : α}, (range fun _ : ι => c) = {c} | ⟨x⟩, _ => (Subset.antisymm range_const_subset) fun _ hy => (mem_singleton_iff.1 hy).symm ▸ mem_range_self x #align set.range_const Set.range_const theorem range_subtype_map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀ x, p x → q (f x)) : range (Subtype.map f h) = (↑) ⁻¹' (f '' { x | p x }) := by ext ⟨x, hx⟩ rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.coe_mk] apply Iff.intro · rintro ⟨a, b, hab⟩ rw [Subtype.map, Subtype.mk.injEq] at hab use a trivial · rintro ⟨a, b, hab⟩ use a use b rw [Subtype.map, Subtype.mk.injEq] exact hab -- Porting note: `simp_rw` fails here -- simp_rw [mem_preimage, mem_range, mem_image, Subtype.exists, Subtype.map, Subtype.coe_mk, -- mem_set_of, exists_prop] #align set.range_subtype_map Set.range_subtype_map theorem image_swap_eq_preimage_swap : image (@Prod.swap α β) = preimage Prod.swap := image_eq_preimage_of_inverse Prod.swap_leftInverse Prod.swap_rightInverse #align set.image_swap_eq_preimage_swap Set.image_swap_eq_preimage_swap theorem preimage_singleton_nonempty {f : α → β} {y : β} : (f ⁻¹' {y}).Nonempty ↔ y ∈ range f := Iff.rfl #align set.preimage_singleton_nonempty Set.preimage_singleton_nonempty theorem preimage_singleton_eq_empty {f : α → β} {y : β} : f ⁻¹' {y} = ∅ ↔ y ∉ range f := not_nonempty_iff_eq_empty.symm.trans preimage_singleton_nonempty.not #align set.preimage_singleton_eq_empty Set.preimage_singleton_eq_empty theorem range_subset_singleton {f : ι → α} {x : α} : range f ⊆ {x} ↔ f = const ι x := by simp [range_subset_iff, funext_iff, mem_singleton] #align set.range_subset_singleton Set.range_subset_singleton theorem image_compl_preimage {f : α → β} {s : Set β} : f '' (f ⁻¹' s)ᶜ = range f \ s := by rw [compl_eq_univ_diff, image_diff_preimage, image_univ] #align set.image_compl_preimage Set.image_compl_preimage /-- Any map `f : ι → β` factors through a map `rangeFactorization f : ι → range f`. -/ def rangeFactorization (f : ι → β) : ι → range f := fun i => ⟨f i, mem_range_self i⟩ #align set.range_factorization Set.rangeFactorization theorem rangeFactorization_eq {f : ι → β} : Subtype.val ∘ rangeFactorization f = f := funext fun _ => rfl #align set.range_factorization_eq Set.rangeFactorization_eq @[simp] theorem rangeFactorization_coe (f : ι → β) (a : ι) : (rangeFactorization f a : β) = f a := rfl #align set.range_factorization_coe Set.rangeFactorization_coe @[simp] theorem coe_comp_rangeFactorization (f : ι → β) : (↑) ∘ rangeFactorization f = f := rfl #align set.coe_comp_range_factorization Set.coe_comp_rangeFactorization theorem surjective_onto_range : Surjective (rangeFactorization f) := fun ⟨_, ⟨i, rfl⟩⟩ => ⟨i, rfl⟩ #align set.surjective_onto_range Set.surjective_onto_range theorem image_eq_range (f : α → β) (s : Set α) : f '' s = range fun x : s => f x := by ext constructor rintro ⟨x, h1, h2⟩ exact ⟨⟨x, h1⟩, h2⟩ rintro ⟨⟨x, h1⟩, h2⟩ exact ⟨x, h1, h2⟩ #align set.image_eq_range Set.image_eq_range theorem _root_.Sum.range_eq (f : Sum α β → γ) : range f = range (f ∘ Sum.inl) ∪ range (f ∘ Sum.inr) := ext fun _ => Sum.exists #align sum.range_eq Sum.range_eq @[simp] theorem Sum.elim_range (f : α → γ) (g : β → γ) : range (Sum.elim f g) = range f ∪ range g := Sum.range_eq _ #align set.sum.elim_range Set.Sum.elim_range theorem range_ite_subset' {p : Prop} [Decidable p] {f g : α → β} : range (if p then f else g) ⊆ range f ∪ range g := by by_cases h : p · rw [if_pos h] exact subset_union_left _ _ · rw [if_neg h] exact subset_union_right _ _ #align set.range_ite_subset' Set.range_ite_subset' theorem range_ite_subset {p : α → Prop} [DecidablePred p] {f g : α → β} : (range fun x => if p x then f x else g x) ⊆ range f ∪ range g := by rw [range_subset_iff]; intro x; by_cases h : p x simp only [if_pos h, mem_union, mem_range, exists_apply_eq_apply, true_or] simp [if_neg h, mem_union, mem_range_self] #align set.range_ite_subset Set.range_ite_subset @[simp] theorem preimage_range (f : α → β) : f ⁻¹' range f = univ := eq_univ_of_forall mem_range_self #align set.preimage_range Set.preimage_range /-- The range of a function from a `Unique` type contains just the function applied to its single value. -/ theorem range_unique [h : Unique ι] : range f = {f default} := by ext x rw [mem_range] constructor · rintro ⟨i, hi⟩ rw [h.uniq i] at hi exact hi ▸ mem_singleton _ · exact fun h => ⟨default, h.symm⟩ #align set.range_unique Set.range_unique theorem range_diff_image_subset (f : α → β) (s : Set α) : range f \ f '' s ⊆ f '' sᶜ := fun _ ⟨⟨x, h₁⟩, h₂⟩ => ⟨x, fun h => h₂ ⟨x, h, h₁⟩, h₁⟩ #align set.range_diff_image_subset Set.range_diff_image_subset theorem range_diff_image {f : α → β} (H : Injective f) (s : Set α) : range f \ f '' s = f '' sᶜ := (Subset.antisymm (range_diff_image_subset f s)) fun _ ⟨_, hx, hy⟩ => hy ▸ ⟨mem_range_self _, fun ⟨_, hx', Eq⟩ => hx <| H Eq ▸ hx'⟩ #align set.range_diff_image Set.range_diff_image @[simp] theorem range_inclusion (h : s ⊆ t) : range (inclusion h) = { x : t | (x : α) ∈ s } := by ext ⟨x, hx⟩ -- Porting note: `simp [inclusion]` doesn't solve goal apply Iff.intro · rw [mem_range] rintro ⟨a, ha⟩ rw [inclusion, Subtype.mk.injEq] at ha rw [mem_setOf, Subtype.coe_mk, ← ha] exact Subtype.coe_prop _ · rw [mem_setOf, Subtype.coe_mk, mem_range] intro hx' use ⟨x, hx'⟩ trivial -- simp_rw [inclusion, mem_range, Subtype.mk_eq_mk] -- rw [SetCoe.exists, Subtype.coe_mk, exists_prop, exists_eq_right, mem_set_of, Subtype.coe_mk] #align set.range_inclusion Set.range_inclusion /-- We can use the axiom of choice to pick a preimage for every element of `range f`. -/ noncomputable def rangeSplitting (f : α → β) : range f → α := fun x => x.2.choose #align set.range_splitting Set.rangeSplitting -- This can not be a `@[simp]` lemma because the head of the left hand side is a variable. theorem apply_rangeSplitting (f : α → β) (x : range f) : f (rangeSplitting f x) = x := x.2.choose_spec #align set.apply_range_splitting Set.apply_rangeSplitting @[simp] theorem comp_rangeSplitting (f : α → β) : f ∘ rangeSplitting f = (↑) := by ext simp only [Function.comp_apply] apply apply_rangeSplitting #align set.comp_range_splitting Set.comp_rangeSplitting -- When `f` is injective, see also `Equiv.ofInjective`. theorem leftInverse_rangeSplitting (f : α → β) : LeftInverse (rangeFactorization f) (rangeSplitting f) := fun x => by apply Subtype.ext -- Porting note: why doesn't `ext` find this lemma? simp only [rangeFactorization_coe] apply apply_rangeSplitting #align set.left_inverse_range_splitting Set.leftInverse_rangeSplitting theorem rangeSplitting_injective (f : α → β) : Injective (rangeSplitting f) := (leftInverse_rangeSplitting f).injective #align set.range_splitting_injective Set.rangeSplitting_injective theorem rightInverse_rangeSplitting {f : α → β} (h : Injective f) : RightInverse (rangeFactorization f) (rangeSplitting f) := (leftInverse_rangeSplitting f).rightInverse_of_injective fun _ _ hxy => h <| Subtype.ext_iff.1 hxy #align set.right_inverse_range_splitting Set.rightInverse_rangeSplitting theorem preimage_rangeSplitting {f : α → β} (hf : Injective f) : preimage (rangeSplitting f) = image (rangeFactorization f) := (image_eq_preimage_of_inverse (rightInverse_rangeSplitting hf) (leftInverse_rangeSplitting f)).symm #align set.preimage_range_splitting Set.preimage_rangeSplitting theorem isCompl_range_some_none (α : Type*) : IsCompl (range (some : α → Option α)) {none} := IsCompl.of_le (fun _ ⟨⟨_, ha⟩, (hn : _ = none)⟩ => Option.some_ne_none _ (ha.trans hn)) fun x _ => Option.casesOn x (Or.inr rfl) fun _ => Or.inl <| mem_range_self _ #align set.is_compl_range_some_none Set.isCompl_range_some_none @[simp] theorem compl_range_some (α : Type*) : (range (some : α → Option α))ᶜ = {none} := (isCompl_range_some_none α).compl_eq #align set.compl_range_some Set.compl_range_some @[simp] theorem range_some_inter_none (α : Type*) : range (some : α → Option α) ∩ {none} = ∅ := (isCompl_range_some_none α).inf_eq_bot #align set.range_some_inter_none Set.range_some_inter_none -- Porting note: -- @[simp] `simp` can prove this theorem range_some_union_none (α : Type*) : range (some : α → Option α) ∪ {none} = univ := (isCompl_range_some_none α).sup_eq_top #align set.range_some_union_none Set.range_some_union_none @[simp] theorem insert_none_range_some (α : Type*) : insert none (range (some : α → Option α)) = univ := (isCompl_range_some_none α).symm.sup_eq_top #align set.insert_none_range_some Set.insert_none_range_some end Range section Subsingleton variable {s : Set α} /-- The image of a subsingleton is a subsingleton. -/ theorem Subsingleton.image (hs : s.Subsingleton) (f : α → β) : (f '' s).Subsingleton := fun _ ⟨_, hx, Hx⟩ _ ⟨_, hy, Hy⟩ => Hx ▸ Hy ▸ congr_arg f (hs hx hy) #align set.subsingleton.image Set.Subsingleton.image /-- The preimage of a subsingleton under an injective map is a subsingleton. -/ theorem Subsingleton.preimage {s : Set β} (hs : s.Subsingleton) {f : α → β} (hf : Function.Injective f) : (f ⁻¹' s).Subsingleton := fun _ ha _ hb => hf <| hs ha hb #align set.subsingleton.preimage Set.Subsingleton.preimage /-- If the image of a set under an injective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_image {f : α → β} (hf : Function.Injective f) (s : Set α) (hs : (f '' s).Subsingleton) : s.Subsingleton := (hs.preimage hf).anti <| subset_preimage_image _ _ #align set.subsingleton_of_image Set.subsingleton_of_image /-- If the preimage of a set under a surjective map is a subsingleton, the set is a subsingleton. -/ theorem subsingleton_of_preimage {f : α → β} (hf : Function.Surjective f) (s : Set β) (hs : (f ⁻¹' s).Subsingleton) : s.Subsingleton := fun fx hx fy hy => by rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact congr_arg f (hs hx hy) #align set.subsingleton_of_preimage Set.subsingleton_of_preimage theorem subsingleton_range {α : Sort*} [Subsingleton α] (f : α → β) : (range f).Subsingleton := forall_range_iff.2 fun x => forall_range_iff.2 fun y => congr_arg f (Subsingleton.elim x y) #align set.subsingleton_range Set.subsingleton_range /-- The preimage of a nontrivial set under a surjective map is nontrivial. -/ theorem Nontrivial.preimage {s : Set β} (hs : s.Nontrivial) {f : α → β} (hf : Function.Surjective f) : (f ⁻¹' s).Nontrivial := by rcases hs with ⟨fx, hx, fy, hy, hxy⟩ rcases hf fx, hf fy with ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ exact ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial.preimage Set.Nontrivial.preimage /-- The image of a nontrivial set under an injective map is nontrivial. -/ theorem Nontrivial.image (hs : s.Nontrivial) {f : α → β} (hf : Function.Injective f) : (f '' s).Nontrivial := let ⟨x, hx, y, hy, hxy⟩ := hs ⟨f x, mem_image_of_mem f hx, f y, mem_image_of_mem f hy, hf.ne hxy⟩ #align set.nontrivial.image Set.Nontrivial.image /-- If the image of a set is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_image (f : α → β) (s : Set α) (hs : (f '' s).Nontrivial) : s.Nontrivial := let ⟨_, ⟨x, hx, rfl⟩, _, ⟨y, hy, rfl⟩, hxy⟩ := hs ⟨x, hx, y, hy, mt (congr_arg f) hxy⟩ #align set.nontrivial_of_image Set.nontrivial_of_image /-- If the preimage of a set under an injective map is nontrivial, the set is nontrivial. -/ theorem nontrivial_of_preimage {f : α → β} (hf : Function.Injective f) (s : Set β) (hs : (f ⁻¹' s).Nontrivial) : s.Nontrivial := (hs.image hf).mono <| image_preimage_subset _ _ #align set.nontrivial_of_preimage Set.nontrivial_of_preimage end Subsingleton end Set namespace Function variable {ι : Sort*} {f : α → β} open Set theorem Surjective.preimage_injective (hf : Surjective f) : Injective (preimage f) := fun _ _ => (preimage_eq_preimage hf).1 #align function.surjective.preimage_injective Function.Surjective.preimage_injective theorem Injective.preimage_image (hf : Injective f) (s : Set α) : f ⁻¹' (f '' s) = s := preimage_image_eq s hf #align function.injective.preimage_image Function.Injective.preimage_image theorem Injective.preimage_surjective (hf : Injective f) : Surjective (preimage f) := by intro s use f '' s rw [hf.preimage_image] #align function.injective.preimage_surjective Function.Injective.preimage_surjective theorem Injective.subsingleton_image_iff (hf : Injective f) {s : Set α} : (f '' s).Subsingleton ↔ s.Subsingleton := ⟨subsingleton_of_image hf s, fun h => h.image f⟩ #align function.injective.subsingleton_image_iff Function.Injective.subsingleton_image_iff theorem Surjective.image_preimage (hf : Surjective f) (s : Set β) : f '' (f ⁻¹' s) = s := image_preimage_eq s hf #align function.surjective.image_preimage Function.Surjective.image_preimage theorem Surjective.image_surjective (hf : Surjective f) : Surjective (image f) := by intro s use f ⁻¹' s rw [hf.image_preimage] #align function.surjective.image_surjective Function.Surjective.image_surjective @[simp] theorem Surjective.nonempty_preimage (hf : Surjective f) {s : Set β} : (f ⁻¹' s).Nonempty ↔ s.Nonempty := by rw [← nonempty_image_iff, hf.image_preimage] #align function.surjective.nonempty_preimage Function.Surjective.nonempty_preimage theorem Injective.image_injective (hf : Injective f) : Injective (image f) := by intro s t h rw [← preimage_image_eq s hf, ← preimage_image_eq t hf, h] #align function.injective.image_injective Function.Injective.image_injective theorem Surjective.preimage_subset_preimage_iff {s t : Set β} (hf : Surjective f) : f ⁻¹' s ⊆ f ⁻¹' t ↔ s ⊆ t := by apply Set.preimage_subset_preimage_iff rw [hf.range_eq] apply subset_univ #align function.surjective.preimage_subset_preimage_iff Function.Surjective.preimage_subset_preimage_iff theorem Surjective.range_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) : range (g ∘ f) = range g := ext fun y => (@Surjective.exists _ _ _ hf fun x => g x = y).symm #align function.surjective.range_comp Function.Surjective.range_comp theorem Injective.mem_range_iff_exists_unique (hf : Injective f) {b : β} : b ∈ range f ↔ ∃! a, f a = b := ⟨fun ⟨a, h⟩ => ⟨a, h, fun _ ha => hf (ha.trans h.symm)⟩, ExistsUnique.exists⟩ #align function.injective.mem_range_iff_exists_unique Function.Injective.mem_range_iff_exists_unique theorem Injective.exists_unique_of_mem_range (hf : Injective f) {b : β} (hb : b ∈ range f) : ∃! a, f a = b := hf.mem_range_iff_exists_unique.mp hb #align function.injective.exists_unique_of_mem_range Function.Injective.exists_unique_of_mem_range theorem Injective.compl_image_eq (hf : Injective f) (s : Set α) : (f '' s)ᶜ = f '' sᶜ ∪ (range f)ᶜ := by ext y rcases em (y ∈ range f) with (⟨x, rfl⟩ | hx) · simp [hf.eq_iff] · rw [mem_range, not_exists] at hx simp [hx] #align function.injective.compl_image_eq Function.Injective.compl_image_eq theorem LeftInverse.image_image {g : β → α} (h : LeftInverse g f) (s : Set α) : g '' (f '' s) = s := by rw [← image_comp, h.comp_eq_id, image_id] #align function.left_inverse.image_image Function.LeftInverse.image_image theorem LeftInverse.preimage_preimage {g : β → α} (h : LeftInverse g f) (s : Set α) : f ⁻¹' (g ⁻¹' s) = s := by rw [← preimage_comp, h.comp_eq_id, preimage_id] #align function.left_inverse.preimage_preimage Function.LeftInverse.preimage_preimage protected theorem Involutive.preimage {f : α → α} (hf : Involutive f) : Involutive (preimage f) := hf.rightInverse.preimage_preimage #align function.involutive.preimage Function.Involutive.preimage end Function namespace EquivLike variable {E : Type*} [EquivLike E ι ι'] @[simp] lemma range_comp (f : ι' → α) (e : E) : range (f ∘ e) = range f := (EquivLike.surjective _).range_comp _ #align equiv_like.range_comp EquivLike.range_comp end EquivLike /-! ### Image and preimage on subtypes -/ namespace Subtype variable {α : Type*} theorem coe_image {p : α → Prop} {s : Set (Subtype p)} : (↑) '' s = { x | ∃ h : p x, (⟨x, h⟩ : Subtype p) ∈ s } := Set.ext fun a => ⟨fun ⟨⟨_, ha'⟩, in_s, h_eq⟩ => h_eq ▸ ⟨ha', in_s⟩, fun ⟨ha, in_s⟩ => ⟨⟨a, ha⟩, in_s, rfl⟩⟩ #align subtype.coe_image Subtype.coe_image @[simp] theorem coe_image_of_subset {s t : Set α} (h : t ⊆ s) : (↑) '' { x : ↥s | ↑x ∈ t } = t := by ext x rw [mem_image] exact ⟨fun ⟨_, hx', hx⟩ => hx ▸ hx', fun hx => ⟨⟨x, h hx⟩, hx, rfl⟩⟩ #align subtype.coe_image_of_subset Subtype.coe_image_of_subset theorem range_coe {s : Set α} : range ((↑) : s → α) = s := by rw [← image_univ] simp [-image_univ, coe_image] #align subtype.range_coe Subtype.range_coe /-- A variant of `range_coe`. Try to use `range_coe` if possible. This version is useful when defining a new type that is defined as the subtype of something. In that case, the coercion doesn't fire anymore. -/ theorem range_val {s : Set α} : range (Subtype.val : s → α) = s := range_coe #align subtype.range_val Subtype.range_val /-- We make this the simp lemma instead of `range_coe`. The reason is that if we write for `s : Set α` the function `(↑) : s → α`, then the inferred implicit arguments of `(↑)` are `↑α (fun x ↦ x ∈ s)`. -/ @[simp] theorem range_coe_subtype {p : α → Prop} : range ((↑) : Subtype p → α) = { x | p x } := range_coe #align subtype.range_coe_subtype Subtype.range_coe_subtype @[simp] theorem coe_preimage_self (s : Set α) : ((↑) : s → α) ⁻¹' s = univ := by rw [← preimage_range, range_coe] #align subtype.coe_preimage_self Subtype.coe_preimage_self theorem range_val_subtype {p : α → Prop} : range (Subtype.val : Subtype p → α) = { x | p x } := range_coe #align subtype.range_val_subtype Subtype.range_val_subtype theorem coe_image_subset (s : Set α) (t : Set s) : ((↑) : s → α) '' t ⊆ s := fun x ⟨y, _, yvaleq⟩ => by rw [← yvaleq]; exact y.property #align subtype.coe_image_subset Subtype.coe_image_subset theorem coe_image_univ (s : Set α) : ((↑) : s → α) '' Set.univ = s := image_univ.trans range_coe #align subtype.coe_image_univ Subtype.coe_image_univ @[simp] theorem image_preimage_coe (s t : Set α) : ((↑) : s → α) '' (((↑) : s → α) ⁻¹' t) = t ∩ s := image_preimage_eq_inter_range.trans <| congr_arg _ range_coe #align subtype.image_preimage_coe Subtype.image_preimage_coe theorem image_preimage_val (s t : Set α) : (Subtype.val : s → α) '' (Subtype.val ⁻¹' t) = t ∩ s := image_preimage_coe s t #align subtype.image_preimage_val Subtype.image_preimage_val theorem preimage_coe_eq_preimage_coe_iff {s t u : Set α} : ((↑) : s → α) ⁻¹' t = ((↑) : s → α) ⁻¹' u ↔ t ∩ s = u ∩ s := by rw [← image_preimage_coe, ← image_preimage_coe, coe_injective.image_injective.eq_iff] #align subtype.preimage_coe_eq_preimage_coe_iff Subtype.preimage_coe_eq_preimage_coe_iff -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_inter_self (s t : Set α) : ((↑) : s → α) ⁻¹' (t ∩ s) = ((↑) : s → α) ⁻¹' t := by rw [preimage_coe_eq_preimage_coe_iff, inter_assoc, inter_self] #align subtype.preimage_coe_inter_self Subtype.preimage_coe_inter_self theorem preimage_val_eq_preimage_val_iff (s t u : Set α) : (Subtype.val : s → α) ⁻¹' t = Subtype.val ⁻¹' u ↔ t ∩ s = u ∩ s := preimage_coe_eq_preimage_coe_iff #align subtype.preimage_val_eq_preimage_val_iff Subtype.preimage_val_eq_preimage_val_iff theorem exists_set_subtype {t : Set α} (p : Set α → Prop) : (∃ s : Set t, p (((↑) : t → α) '' s)) ↔ ∃ s : Set α, s ⊆ t ∧ p s := by rw [← exists_subset_range_and_iff, range_coe] #align subtype.exists_set_subtype Subtype.exists_set_subtype theorem forall_set_subtype {t : Set α} (p : Set α → Prop) : (∀ s : Set t, p (((↑) : t → α) '' s)) ↔ ∀ s : Set α, s ⊆ t → p s := by rw [← forall_subset_range_iff, range_coe] theorem preimage_coe_nonempty {s t : Set α} : (((↑) : s → α) ⁻¹' t).Nonempty ↔ (s ∩ t).Nonempty := by rw [inter_comm, ← image_preimage_coe, nonempty_image_iff] #align subtype.preimage_coe_nonempty Subtype.preimage_coe_nonempty theorem preimage_coe_eq_empty {s t : Set α} : ((↑) : s → α) ⁻¹' t = ∅ ↔ s ∩ t = ∅ := by simp [← not_nonempty_iff_eq_empty, preimage_coe_nonempty] #align subtype.preimage_coe_eq_empty Subtype.preimage_coe_eq_empty -- Porting note: -- @[simp] `simp` can prove this theorem preimage_coe_compl (s : Set α) : ((↑) : s → α) ⁻¹' sᶜ = ∅ := preimage_coe_eq_empty.2 (inter_compl_self s) #align subtype.preimage_coe_compl Subtype.preimage_coe_compl @[simp] theorem preimage_coe_compl' (s : Set α) : (fun x : (sᶜ : Set α) => (x : α)) ⁻¹' s = ∅ := preimage_coe_eq_empty.2 (compl_inter_self s) #align subtype.preimage_coe_compl' Subtype.preimage_coe_compl' end Subtype /-! ### Images and preimages on `Option` -/ open Set namespace Option theorem injective_iff {α β} {f : Option α → β} : Injective f ↔ Injective (f ∘ some) ∧ f none ∉ range (f ∘ some) := by simp only [mem_range, not_exists, (· ∘ ·)] refine' ⟨fun hf => ⟨hf.comp (Option.some_injective _), fun x => hf.ne <| Option.some_ne_none _⟩, _⟩ rintro ⟨h_some, h_none⟩ (_ | a) (_ | b) hab exacts [rfl, (h_none _ hab.symm).elim, (h_none _ hab).elim, congr_arg some (h_some hab)] #align option.injective_iff Option.injective_iff theorem range_eq {α β} (f : Option α → β) : range f = insert (f none) (range (f ∘ some)) := Set.ext fun _ => Option.exists.trans <| eq_comm.or Iff.rfl #align option.range_eq Option.range_eq end Option theorem WithBot.range_eq {α β} (f : WithBot α → β) : range f = insert (f ⊥) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_bot.range_eq WithBot.range_eq theorem WithTop.range_eq {α β} (f : WithTop α → β) : range f = insert (f ⊤) (range (f ∘ WithBot.some : α → β)) := Option.range_eq f #align with_top.range_eq WithTop.range_eq namespace Set open Function /-! ### Injectivity and surjectivity lemmas for image and preimage -/ section ImagePreimage variable {α : Type u} {β : Type v} {f : α → β} @[simp] theorem preimage_injective : Injective (preimage f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.preimage_injective⟩ obtain ⟨x, hx⟩ : (f ⁻¹' {y}).Nonempty := by rw [h.nonempty_apply_iff preimage_empty] apply singleton_nonempty exact ⟨x, hx⟩ #align set.preimage_injective Set.preimage_injective @[simp] theorem preimage_surjective : Surjective (preimage f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.preimage_surjective⟩ cases' h {x} with s hs; have := mem_singleton x rwa [← hs, mem_preimage, hx, ← mem_preimage, hs, mem_singleton_iff, eq_comm] at this #align set.preimage_surjective Set.preimage_surjective @[simp] theorem image_surjective : Surjective (image f) ↔ Surjective f := by refine' ⟨fun h y => _, Surjective.image_surjective⟩ cases' h {y} with s hs have := mem_singleton y; rw [← hs] at this; rcases this with ⟨x, _, hx⟩ exact ⟨x, hx⟩ #align set.image_surjective Set.image_surjective @[simp] theorem image_injective : Injective (image f) ↔ Injective f := by refine' ⟨fun h x x' hx => _, Injective.image_injective⟩ rw [← singleton_eq_singleton_iff]; apply h rw [image_singleton, image_singleton, hx] #align set.image_injective Set.image_injective theorem preimage_eq_iff_eq_image {f : α → β} (hf : Bijective f) {s t} : f ⁻¹' s = t ↔ s = f '' t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.preimage_eq_iff_eq_image Set.preimage_eq_iff_eq_image theorem eq_preimage_iff_image_eq {f : α → β} (hf : Bijective f) {s t} : s = f ⁻¹' t ↔ f '' s = t := by rw [← image_eq_image hf.1, hf.2.image_preimage] #align set.eq_preimage_iff_image_eq Set.eq_preimage_iff_image_eq end ImagePreimage end Set /-! ### Disjoint lemmas for image and preimage -/ section Disjoint variable {α β γ : Type*} {f : α → β} {s t : Set α} theorem Disjoint.preimage (f : α → β) {s t : Set β} (h : Disjoint s t) : Disjoint (f ⁻¹' s) (f ⁻¹' t) := disjoint_iff_inf_le.mpr fun _ hx => h.le_bot hx #align disjoint.preimage Disjoint.preimage namespace Set theorem disjoint_image_image {f : β → α} {g : γ → α} {s : Set β} {t : Set γ} (h : ∀ b ∈ s, ∀ c ∈ t, f b ≠ g c) : Disjoint (f '' s) (g '' t) := disjoint_iff_inf_le.mpr <| by rintro a ⟨⟨b, hb, eq⟩, c, hc, rfl⟩; exact h b hb c hc eq #align set.disjoint_image_image Set.disjoint_image_image theorem disjoint_image_of_injective (hf : Injective f) {s t : Set α} (hd : Disjoint s t) : Disjoint (f '' s) (f '' t) := disjoint_image_image fun _ hx _ hy => hf.ne fun H => Set.disjoint_iff.1 hd ⟨hx, H.symm ▸ hy⟩ #align set.disjoint_image_of_injective Set.disjoint_image_of_injective theorem _root_.Disjoint.of_image (h : Disjoint (f '' s) (f '' t)) : Disjoint s t := disjoint_iff_inf_le.mpr fun _ hx => disjoint_left.1 h (mem_image_of_mem _ hx.1) (mem_image_of_mem _ hx.2) #align disjoint.of_image Disjoint.of_image @[simp] theorem disjoint_image_iff (hf : Injective f) : Disjoint (f '' s) (f '' t) ↔ Disjoint s t := ⟨Disjoint.of_image, disjoint_image_of_injective hf⟩ #align set.disjoint_image_iff Set.disjoint_image_iff theorem _root_.Disjoint.of_preimage (hf : Surjective f) {s t : Set β} (h : Disjoint (f ⁻¹' s) (f ⁻¹' t)) : Disjoint s t := by rw [disjoint_iff_inter_eq_empty, ← image_preimage_eq (_ ∩ _) hf, preimage_inter, h.inter_eq, image_empty] #align disjoint.of_preimage Disjoint.of_preimage @[simp] theorem disjoint_preimage_iff (hf : Surjective f) {s t : Set β} : Disjoint (f ⁻¹' s) (f ⁻¹' t) ↔ Disjoint s t := ⟨Disjoint.of_preimage hf, Disjoint.preimage _⟩ #align set.disjoint_preimage_iff Set.disjoint_preimage_iff theorem preimage_eq_empty {s : Set β} (h : Disjoint s (range f)) : f ⁻¹' s = ∅ := by simpa using h.preimage f #align set.preimage_eq_empty Set.preimage_eq_empty theorem preimage_eq_empty_iff {s : Set β} : f ⁻¹' s = ∅ ↔ Disjoint s (range f) := ⟨fun h => by simp only [eq_empty_iff_forall_not_mem, disjoint_iff_inter_eq_empty, not_exists, mem_inter_iff, not_and, mem_range, mem_preimage] at h ⊢ intro y hy x hx rw [← hx] at hy exact h x hy, preimage_eq_empty⟩ #align set.preimage_eq_empty_iff Set.preimage_eq_empty_iff end Set end Disjoint section Sigma variable {α : Type*} {β : α → Type*} {i j : α} {s : Set (β i)} lemma sigma_mk_preimage_image' (h : i ≠ j) : Sigma.mk j ⁻¹' (Sigma.mk i '' s) = ∅ := by simp [image, h] lemma sigma_mk_preimage_image_eq_self : Sigma.mk i ⁻¹' (Sigma.mk i '' s) = s := by
simp [image]
lemma sigma_mk_preimage_image_eq_self : Sigma.mk i ⁻¹' (Sigma.mk i '' s) = s := by
Mathlib.Data.Set.Image.1674_0.IJFiTzmYGOCpPSd
lemma sigma_mk_preimage_image_eq_self : Sigma.mk i ⁻¹' (Sigma.mk i '' s) = s
Mathlib_Data_Set_Image
o : Ordinal.{u_1} ⊢ let_fun this := (_ : IsWellOrder (Quotient.out o).α fun x x_1 => x < x_1); nim o = mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by
rw [nim]
theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by
Mathlib.SetTheory.Game.Nim.59_0.mmFMhRYSjViKjcP
theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ let_fun this := (_ : IsWellOrder (Quotient.out o).α fun x x_1 => x < x_1); (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => let_fun x := (_ : typein (fun x x_1 => x < x_1) o₂ < o); nim (typein (Quotient.out o).r o₂)) fun o₂ => let_fun x := (_ : typein (fun x x_1 => x < x_1) o₂ < o); nim (typein (Quotient.out o).r o₂)) = mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim];
rfl
theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim];
Mathlib.SetTheory.Game.Nim.59_0.mmFMhRYSjViKjcP
theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ LeftMoves (nim o) = (Quotient.out o).α
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by
rw [nim_def]
theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by
Mathlib.SetTheory.Game.Nim.67_0.mmFMhRYSjViKjcP
theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ LeftMoves (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) = (Quotient.out o).α
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def];
rfl
theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def];
Mathlib.SetTheory.Game.Nim.67_0.mmFMhRYSjViKjcP
theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ RightMoves (nim o) = (Quotient.out o).α
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by
rw [nim_def]
theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by
Mathlib.SetTheory.Game.Nim.70_0.mmFMhRYSjViKjcP
theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ RightMoves (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) = (Quotient.out o).α
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def];
rfl
theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def];
Mathlib.SetTheory.Game.Nim.70_0.mmFMhRYSjViKjcP
theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ let_fun this := (_ : IsWellOrder (Quotient.out o).α fun x x_1 => x < x_1); HEq (moveLeft (nim o)) fun i => nim (typein (fun x x_1 => x < x_1) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by
rw [nim_def]
theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by
Mathlib.SetTheory.Game.Nim.73_0.mmFMhRYSjViKjcP
theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ let_fun this := (_ : IsWellOrder (Quotient.out o).α fun x x_1 => x < x_1); HEq (moveLeft (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂))) fun i => nim (typein (fun x x_1 => x < x_1) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def];
rfl
theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def];
Mathlib.SetTheory.Game.Nim.73_0.mmFMhRYSjViKjcP
theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ let_fun this := (_ : IsWellOrder (Quotient.out o).α fun x x_1 => x < x_1); HEq (moveRight (nim o)) fun i => nim (typein (fun x x_1 => x < x_1) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by
rw [nim_def]
theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by
Mathlib.SetTheory.Game.Nim.78_0.mmFMhRYSjViKjcP
theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ let_fun this := (_ : IsWellOrder (Quotient.out o).α fun x x_1 => x < x_1); HEq (moveRight (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂))) fun i => nim (typein (fun x x_1 => x < x_1) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def];
rfl
theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def];
Mathlib.SetTheory.Game.Nim.78_0.mmFMhRYSjViKjcP
theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} i : ↑(Set.Iio o) ⊢ moveLeft (nim o) (toLeftMovesNim i) = nim ↑i
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by
simp
theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by
Mathlib.SetTheory.Game.Nim.111_0.mmFMhRYSjViKjcP
theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} i : ↑(Set.Iio o) ⊢ moveRight (nim o) (toRightMovesNim i) = nim ↑i
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by
simp
theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by
Mathlib.SetTheory.Game.Nim.119_0.mmFMhRYSjViKjcP
theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i
Mathlib_SetTheory_Game_Nim
o : Ordinal.{?u.16604} P : LeftMoves (nim o) → Sort u_1 i : LeftMoves (nim o) H : (a : Ordinal.{?u.16604}) → (H : a < o) → P (toLeftMovesNim { val := a, property := H }) ⊢ P i
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by
rw [← toLeftMovesNim.apply_symm_apply i]
/-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by
Mathlib.SetTheory.Game.Nim.122_0.mmFMhRYSjViKjcP
/-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i
Mathlib_SetTheory_Game_Nim
o : Ordinal.{?u.16604} P : LeftMoves (nim o) → Sort u_1 i : LeftMoves (nim o) H : (a : Ordinal.{?u.16604}) → (H : a < o) → P (toLeftMovesNim { val := a, property := H }) ⊢ P (toLeftMovesNim (toLeftMovesNim.symm i))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i];
apply H
/-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i];
Mathlib.SetTheory.Game.Nim.122_0.mmFMhRYSjViKjcP
/-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i
Mathlib_SetTheory_Game_Nim
o : Ordinal.{?u.17019} P : RightMoves (nim o) → Sort u_1 i : RightMoves (nim o) H : (a : Ordinal.{?u.17019}) → (H : a < o) → P (toRightMovesNim { val := a, property := H }) ⊢ P i
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by
rw [← toRightMovesNim.apply_symm_apply i]
/-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by
Mathlib.SetTheory.Game.Nim.129_0.mmFMhRYSjViKjcP
/-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i
Mathlib_SetTheory_Game_Nim
o : Ordinal.{?u.17019} P : RightMoves (nim o) → Sort u_1 i : RightMoves (nim o) H : (a : Ordinal.{?u.17019}) → (H : a < o) → P (toRightMovesNim { val := a, property := H }) ⊢ P (toRightMovesNim (toRightMovesNim.symm i))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i];
apply H
/-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i];
Mathlib.SetTheory.Game.Nim.129_0.mmFMhRYSjViKjcP
/-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i
Mathlib_SetTheory_Game_Nim
⊢ IsEmpty (LeftMoves (nim 0))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by
rw [nim_def]
instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by
Mathlib.SetTheory.Game.Nim.136_0.mmFMhRYSjViKjcP
instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves
Mathlib_SetTheory_Game_Nim
⊢ IsEmpty (LeftMoves (mk (Quotient.out 0).α (Quotient.out 0).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def]
exact Ordinal.isEmpty_out_zero
instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def]
Mathlib.SetTheory.Game.Nim.136_0.mmFMhRYSjViKjcP
instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves
Mathlib_SetTheory_Game_Nim
⊢ IsEmpty (RightMoves (nim 0))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by
rw [nim_def]
instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by
Mathlib.SetTheory.Game.Nim.141_0.mmFMhRYSjViKjcP
instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves
Mathlib_SetTheory_Game_Nim
⊢ IsEmpty (RightMoves (mk (Quotient.out 0).α (Quotient.out 0).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def]
exact Ordinal.isEmpty_out_zero
instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def]
Mathlib.SetTheory.Game.Nim.141_0.mmFMhRYSjViKjcP
instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves
Mathlib_SetTheory_Game_Nim
i : LeftMoves (nim 1) ⊢ toLeftMovesNim.symm i = { val := 0, property := (_ : 0 ∈ Set.Iio 1) }
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by
simp [eq_iff_true_of_subsingleton]
@[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by
Mathlib.SetTheory.Game.Nim.175_0.mmFMhRYSjViKjcP
@[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩
Mathlib_SetTheory_Game_Nim
i : RightMoves (nim 1) ⊢ toRightMovesNim.symm i = { val := 0, property := (_ : 0 ∈ Set.Iio 1) }
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by
simp [eq_iff_true_of_subsingleton]
@[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by
Mathlib.SetTheory.Game.Nim.181_0.mmFMhRYSjViKjcP
@[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩
Mathlib_SetTheory_Game_Nim
x : LeftMoves (nim 1) ⊢ moveLeft (nim 1) x = nim 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by
simp
theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by
Mathlib.SetTheory.Game.Nim.187_0.mmFMhRYSjViKjcP
theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0
Mathlib_SetTheory_Game_Nim
x : RightMoves (nim 1) ⊢ moveRight (nim 1) x = nim 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by
simp
theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by
Mathlib.SetTheory.Game.Nim.190_0.mmFMhRYSjViKjcP
theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0
Mathlib_SetTheory_Game_Nim
⊢ nim 1 ≡r star
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by
rw [nim_def]
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
⊢ (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ≡r star
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def]
refine' ⟨_, _, fun i => _, fun j => _⟩
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def]
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_1 ⊢ LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ≃ LeftMoves star case refine'_2 ⊢ RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ≃ RightMoves star case refine'_3 i : LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveLeft (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i ≡r moveLeft star (?refine'_1 i) case refine'_4 j : RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveRight (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) j ≡r moveRight star (?refine'_2 j)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩
any_goals dsimp; apply Equiv.equivOfUnique
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_1 ⊢ LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ≃ LeftMoves star
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
dsimp
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_1 ⊢ (Quotient.out 1).α ≃ PUnit.{?u.23865 + 1}
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
apply Equiv.equivOfUnique
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_2 ⊢ RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ≃ RightMoves star
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
dsimp
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_2 ⊢ (Quotient.out 1).α ≃ PUnit.{?u.23865 + 1}
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
apply Equiv.equivOfUnique
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_3 i : LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveLeft (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i ≡r moveLeft star ((id (Equiv.equivOfUnique (Quotient.out 1).α PUnit.{?u.23865 + 1})) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
dsimp
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_3 i : LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ nim (typein (fun x x_1 => x < x_1) i) ≡r 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
apply Equiv.equivOfUnique
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_4 j : RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveRight (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) j ≡r moveRight star ((id (Equiv.equivOfUnique (Quotient.out 1).α PUnit.{?u.23865 + 1})) j)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
dsimp
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_4 j : RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ nim (typein (fun x x_1 => x < x_1) j) ≡r 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
apply Equiv.equivOfUnique
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp;
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_3 i : LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveLeft (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i ≡r moveLeft star ((id (Equiv.equivOfUnique (Quotient.out 1).α PUnit.{?u.23865 + 1})) i) case refine'_4 j : RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveRight (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) j ≡r moveRight star ((id (Equiv.equivOfUnique (Quotient.out 1).α PUnit.{?u.23865 + 1})) j)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique
all_goals simp; exact nimZeroRelabelling
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_3 i : LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveLeft (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i ≡r moveLeft star ((id (Equiv.equivOfUnique (Quotient.out 1).α PUnit.{?u.23865 + 1})) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals
simp
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_3 i : LeftMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ nim 0 ≡r 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp;
exact nimZeroRelabelling
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp;
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_4 j : RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ moveRight (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) j ≡r moveRight star ((id (Equiv.equivOfUnique (Quotient.out 1).α PUnit.{?u.25119 + 1})) j)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals
simp
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
case refine'_4 j : RightMoves (mk (Quotient.out 1).α (Quotient.out 1).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ nim 0 ≡r 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp;
exact nimZeroRelabelling
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp;
Mathlib.SetTheory.Game.Nim.193_0.mmFMhRYSjViKjcP
/-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ birthday (nim o) = o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by
induction' o using Ordinal.induction with o IH
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by
Mathlib.SetTheory.Game.Nim.205_0.mmFMhRYSjViKjcP
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, birthday (nim k) = k ⊢ birthday (nim o) = o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH
rw [nim_def, birthday_def]
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH
Mathlib.SetTheory.Game.Nim.205_0.mmFMhRYSjViKjcP
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, birthday (nim k) = k ⊢ max (lsub fun i => birthday (moveLeft (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i)) (lsub fun i => birthday (moveRight (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i)) = o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def]
dsimp
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def]
Mathlib.SetTheory.Game.Nim.205_0.mmFMhRYSjViKjcP
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, birthday (nim k) = k ⊢ max (lsub fun i => birthday (nim (typein (fun x x_1 => x < x_1) i))) (lsub fun i => birthday (nim (typein (fun x x_1 => x < x_1) i))) = o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp
rw [max_eq_right le_rfl]
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp
Mathlib.SetTheory.Game.Nim.205_0.mmFMhRYSjViKjcP
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, birthday (nim k) = k ⊢ (lsub fun i => birthday (nim (typein (fun x x_1 => x < x_1) i))) = o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl]
convert lsub_typein o with i
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl]
Mathlib.SetTheory.Game.Nim.205_0.mmFMhRYSjViKjcP
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o
Mathlib_SetTheory_Game_Nim
case h.e'_2.h.e'_2.h o : Ordinal.{u_1} IH : ∀ k < o, birthday (nim k) = k i : (Quotient.out o).α ⊢ birthday (nim (typein (fun x x_1 => x < x_1) i)) = typein (fun x x_1 => x < x_1) i
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i
exact IH _ (typein_lt_self i)
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i
Mathlib.SetTheory.Game.Nim.205_0.mmFMhRYSjViKjcP
@[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ⊢ -nim o = nim o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by
induction' o using Ordinal.induction with o IH
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k ⊢ -nim o = nim o
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH
rw [nim_def]
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k ⊢ (-mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) = mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def];
dsimp
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def];
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k ⊢ (mk (Quotient.out o).α (Quotient.out o).α (fun j => -nim (typein (fun x x_1 => x < x_1) j)) fun i => -nim (typein (fun x x_1 => x < x_1) i)) = mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp;
congr
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp;
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h.e_a o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k ⊢ (fun j => -nim (typein (fun x x_1 => x < x_1) j)) = fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;>
funext i
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;>
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h.e_a o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k ⊢ (fun i => -nim (typein (fun x x_1 => x < x_1) i)) = fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;>
funext i
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;>
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h.e_a.h o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k i : (Quotient.out o).α ⊢ -nim (typein (fun x x_1 => x < x_1) i) = nim (typein (fun x x_1 => x < x_1) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;>
exact IH _ (Ordinal.typein_lt_self i)
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;>
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
case h.e_a.h o : Ordinal.{u_1} IH : ∀ k < o, -nim k = nim k i : (Quotient.out o).α ⊢ -nim (typein (fun x x_1 => x < x_1) i) = nim (typein (fun x x_1 => x < x_1) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;>
exact IH _ (Ordinal.typein_lt_self i)
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;>
Mathlib.SetTheory.Game.Nim.215_0.mmFMhRYSjViKjcP
@[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o
Mathlib_SetTheory_Game_Nim
o : Ordinal.{?u.34699} ⊢ Impartial (nim o)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by
induction' o using Ordinal.induction with o IH
instance nim_impartial (o : Ordinal) : Impartial (nim o) := by
Mathlib.SetTheory.Game.Nim.221_0.mmFMhRYSjViKjcP
instance nim_impartial (o : Ordinal) : Impartial (nim o)
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{?u.34717} IH : ∀ k < o, Impartial (nim k) ⊢ Impartial (nim o)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH
rw [impartial_def, neg_nim]
instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH
Mathlib.SetTheory.Game.Nim.221_0.mmFMhRYSjViKjcP
instance nim_impartial (o : Ordinal) : Impartial (nim o)
Mathlib_SetTheory_Game_Nim
case h o : Ordinal.{?u.34717} IH : ∀ k < o, Impartial (nim k) ⊢ nim o ≈ nim o ∧ (∀ (i : LeftMoves (nim o)), Impartial (moveLeft (nim o) i)) ∧ ∀ (j : RightMoves (nim o)), Impartial (moveRight (nim o) j)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim]
refine' ⟨equiv_rfl, fun i => _, fun i => _⟩
instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim]
Mathlib.SetTheory.Game.Nim.221_0.mmFMhRYSjViKjcP
instance nim_impartial (o : Ordinal) : Impartial (nim o)
Mathlib_SetTheory_Game_Nim
case h.refine'_1 o : Ordinal.{?u.34717} IH : ∀ k < o, Impartial (nim k) i : LeftMoves (nim o) ⊢ Impartial (moveLeft (nim o) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;>
simpa using IH _ (typein_lt_self _)
instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;>
Mathlib.SetTheory.Game.Nim.221_0.mmFMhRYSjViKjcP
instance nim_impartial (o : Ordinal) : Impartial (nim o)
Mathlib_SetTheory_Game_Nim
case h.refine'_2 o : Ordinal.{?u.35327} IH : ∀ k < o, Impartial (nim k) i : RightMoves (nim o) ⊢ Impartial (moveRight (nim o) i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;>
simpa using IH _ (typein_lt_self _)
instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;>
Mathlib.SetTheory.Game.Nim.221_0.mmFMhRYSjViKjcP
instance nim_impartial (o : Ordinal) : Impartial (nim o)
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ho : o ≠ 0 ⊢ nim o ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by
rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le]
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by
Mathlib.SetTheory.Game.Nim.227_0.mmFMhRYSjViKjcP
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ho : o ≠ 0 ⊢ ∃ j, moveRight (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) j ≤ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le]
rw [← Ordinal.pos_iff_ne_zero] at ho
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le]
Mathlib.SetTheory.Game.Nim.227_0.mmFMhRYSjViKjcP
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ho : 0 < o ⊢ ∃ j, moveRight (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) j ≤ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho
exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho
Mathlib.SetTheory.Game.Nim.227_0.mmFMhRYSjViKjcP
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0
Mathlib_SetTheory_Game_Nim
o : Ordinal.{u_1} ho : 0 < o ⊢ moveRight (mk (Quotient.out o).α (Quotient.out o).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) (principalSegOut ho).top ≤ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by
simp
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by
Mathlib.SetTheory.Game.Nim.227_0.mmFMhRYSjViKjcP
theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0
Mathlib_SetTheory_Game_Nim
o₁ o₂ : Ordinal.{u_1} ⊢ nim o₁ + nim o₂ ≈ 0 ↔ o₁ = o₂
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by
constructor
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case mp o₁ o₂ : Ordinal.{u_1} ⊢ nim o₁ + nim o₂ ≈ 0 → o₁ = o₂
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor ·
refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor ·
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case mp o₁ o₂ : Ordinal.{u_1} hne : o₁ ≠ o₂ ⊢ nim o₁ + nim o₂ ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _
wlog h : o₁ < o₂
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case mp.inr o₁ o₂ : Ordinal.{u_1} hne : o₁ ≠ o₂ this : ∀ (o₁ o₂ : Ordinal.{u_1}), o₁ ≠ o₂ → o₁ < o₂ → nim o₁ + nim o₂ ‖ 0 h : ¬o₁ < o₂ ⊢ nim o₁ + nim o₂ ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ ·
exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h))
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ ·
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
o₁ o₂ : Ordinal.{u_1} hne : o₁ ≠ o₂ h : o₁ < o₂ ⊢ nim o₁ + nim o₂ ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h))
rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂]
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h))
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
o₁ o₂ : Ordinal.{u_1} hne : o₁ ≠ o₂ h : o₁ < o₂ ⊢ ∃ i, 0 ≤ moveLeft (nim o₁ + mk (Quotient.out o₂).α (Quotient.out o₂).α (fun o₂_1 => nim (typein (fun x x_1 => x < x_1) o₂_1)) fun o₂_1 => nim (typein (fun x x_1 => x < x_1) o₂_1)) i
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂]
refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂]
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case refine'_1 o₁ o₂ : Ordinal.{u_1} hne : o₁ ≠ o₂ h : o₁ < o₂ ⊢ LeftMoves (mk (Quotient.out o₂).α (Quotient.out o₂).α (fun o₂_1 => nim (typein (fun x x_1 => x < x_1) o₂_1)) fun o₂_1 => nim (typein (fun x x_1 => x < x_1) o₂_1))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ ·
exact (Ordinal.principalSegOut h).top
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ ·
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case refine'_2 o₁ o₂ : Ordinal.{u_1} hne : o₁ ≠ o₂ h : o₁ < o₂ ⊢ 0 ≤ moveLeft (nim o₁ + mk (Quotient.out o₂).α (Quotient.out o₂).α (fun o₂_1 => nim (typein (fun x x_1 => x < x_1) o₂_1)) fun o₂_1 => nim (typein (fun x x_1 => x < x_1) o₂_1)) (toLeftMovesAdd (Sum.inr (principalSegOut h).top))
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp
simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case mpr o₁ o₂ : Ordinal.{u_1} ⊢ o₁ = o₂ → nim o₁ + nim o₂ ≈ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 ·
rintro rfl
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 ·
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
case mpr o₁ : Ordinal.{u_1} ⊢ nim o₁ + nim o₁ ≈ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl
exact Impartial.add_self (nim o₁)
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl
Mathlib.SetTheory.Game.Nim.233_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
o₁ o₂ : Ordinal.{u_1} ⊢ nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by
rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff]
@[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by
Mathlib.SetTheory.Game.Nim.249_0.mmFMhRYSjViKjcP
@[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂
Mathlib_SetTheory_Game_Nim
o₁ o₂ : Ordinal.{u_1} ⊢ nim o₁ ≈ nim o₂ ↔ o₁ = o₂
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by
rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff]
@[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by
Mathlib.SetTheory.Game.Nim.254_0.mmFMhRYSjViKjcP
@[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂
Mathlib_SetTheory_Game_Nim
x✝ : PGame G : PGame := x✝ i : LeftMoves G ⊢ (invImage (fun a => a) instWellFoundedRelationPGame).1 (moveLeft G i) x✝
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by
pgame_wf_tac
/-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by
Mathlib.SetTheory.Game.Nim.259_0.mmFMhRYSjViKjcP
/-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac
Mathlib_SetTheory_Game_Nim
G : PGame ⊢ grundyValue G = mex fun i => grundyValue (moveLeft G i)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by
rw [grundyValue]
theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by
Mathlib.SetTheory.Game.Nim.267_0.mmFMhRYSjViKjcP
theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i)
Mathlib_SetTheory_Game_Nim
x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ ⊢ x✝ ≈ nim (grundyValue x✝)
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by
rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero]
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ ⊢ ∀ (i : LeftMoves (x✝ + nim (grundyValue x✝))), moveLeft (x✝ + nim (grundyValue x✝)) i ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero]
intro i
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero]
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) ⊢ moveLeft (x✝ + nim (grundyValue x✝)) i ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i
apply leftMoves_add_cases i
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) ⊢ ∀ (i : LeftMoves x✝), moveLeft (x✝ + nim (grundyValue x✝)) (toLeftMovesAdd (Sum.inl i)) ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i ·
intro i₁
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i ·
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ ⊢ moveLeft (x✝ + nim (grundyValue x✝)) (toLeftMovesAdd (Sum.inl i₁)) ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁
rw [add_moveLeft_inl]
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ ⊢ moveLeft x✝ i₁ + nim (grundyValue x✝) ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl]
apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl]
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ ⊢ nim (grundyValue (moveLeft G i₁)) + nim (grundyValue x✝) ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1
rw [nim_add_fuzzy_zero_iff]
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ ⊢ grundyValue (moveLeft G i₁) ≠ grundyValue x✝
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff]
intro heq
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff]
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ heq : grundyValue (moveLeft G i₁) = grundyValue x✝ ⊢ False
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq
rw [eq_comm, grundyValue_eq_mex_left G] at heq
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ heq : (mex fun i => grundyValue (moveLeft G i)) = grundyValue (moveLeft G i₁) ⊢ False
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument
have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i))
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ heq : (mex fun i => grundyValue (moveLeft G i)) = grundyValue (moveLeft G i₁) h : ∀ (i : LeftMoves G), grundyValue (moveLeft G i) ≠ mex fun i => grundyValue (moveLeft G i) ⊢ False
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i))
rw [heq] at h
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i))
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hl x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₁ : LeftMoves x✝ heq : (mex fun i => grundyValue (moveLeft G i)) = grundyValue (moveLeft G i₁) h : ∀ (i : LeftMoves G), grundyValue (moveLeft G i) ≠ grundyValue (moveLeft G i₁) ⊢ False
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h
exact (h i₁).irrefl
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hr x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) ⊢ ∀ (i : LeftMoves (nim (grundyValue x✝))), moveLeft (x✝ + nim (grundyValue x✝)) (toLeftMovesAdd (Sum.inr i)) ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl ·
intro i₂
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl ·
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hr x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₂ : LeftMoves (nim (grundyValue x✝)) ⊢ moveLeft (x✝ + nim (grundyValue x✝)) (toLeftMovesAdd (Sum.inr i₂)) ‖ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂
rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero]
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hr x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₂ : LeftMoves (nim (grundyValue x✝)) ⊢ ∃ i, moveLeft (x✝ + moveLeft (nim (grundyValue x✝)) i₂) i ≈ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero]
revert i₂
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero]
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hr x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) ⊢ ∀ (i₂ : LeftMoves (nim (grundyValue x✝))), ∃ i, moveLeft (x✝ + moveLeft (nim (grundyValue x✝)) i₂) i ≈ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero] revert i₂
rw [nim_def]
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero] revert i₂
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hr x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) ⊢ ∀ (i₂ : LeftMoves (mk (Quotient.out (grundyValue x✝)).α (Quotient.out (grundyValue x✝)).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂))), ∃ i, moveLeft (x✝ + moveLeft (mk (Quotient.out (grundyValue x✝)).α (Quotient.out (grundyValue x✝)).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i₂) i ≈ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero] revert i₂ rw [nim_def]
intro i₂
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero] revert i₂ rw [nim_def]
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim
case hr x✝ : PGame inst✝ : Impartial x✝ G : PGame := x✝ i : LeftMoves (x✝ + nim (grundyValue x✝)) i₂ : LeftMoves (mk (Quotient.out (grundyValue x✝)).α (Quotient.out (grundyValue x✝)).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) ⊢ ∃ i, moveLeft (x✝ + moveLeft (mk (Quotient.out (grundyValue x✝)).α (Quotient.out (grundyValue x✝)).α (fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) fun o₂ => nim (typein (fun x x_1 => x < x_1) o₂)) i₂) i ≈ 0
/- Copyright (c) 2020 Fox Thomson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Fox Thomson, Markus Himmel -/ import Mathlib.Data.Nat.Bitwise import Mathlib.SetTheory.Game.Birthday import Mathlib.SetTheory.Game.Impartial #align_import set_theory.game.nim from "leanprover-community/mathlib"@"92ca63f0fb391a9ca5f22d2409a6080e786d99f7" /-! # Nim and the Sprague-Grundy theorem This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players may move to `nim o₂` for any `o₂ < o₁`. We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that `G` is equivalent to `nim (grundyValue G)`. Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`, where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`. ## Implementation details The pen-and-paper definition of nim defines the possible moves of `nim o` to be `Set.Iio o`. However, this definition does not work for us because it would make the type of nim `Ordinal.{u} → SetTheory.PGame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy theorem, since that requires the type of `nim` to be `Ordinal.{u} → SetTheory.PGame.{u}`. For this reason, we instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and `to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and vice versa. -/ noncomputable section universe u namespace SetTheory open scoped PGame namespace PGame -- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error /-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can take a positive number of stones from it on their turn. -/ noncomputable def nim : Ordinal.{u} → PGame.{u} | o₁ => let f o₂ := have _ : Ordinal.typein o₁.out.r o₂ < o₁ := Ordinal.typein_lt_self o₂ nim (Ordinal.typein o₁.out.r o₂) ⟨o₁.out.α, o₁.out.α, f, f⟩ termination_by nim o => o #align pgame.nim SetTheory.PGame.nim open Ordinal theorem nim_def (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance nim o = PGame.mk o.out.α o.out.α (fun o₂ => nim (Ordinal.typein (· < ·) o₂)) fun o₂ => nim (Ordinal.typein (· < ·) o₂) := by rw [nim]; rfl #align pgame.nim_def SetTheory.PGame.nim_def theorem leftMoves_nim (o : Ordinal) : (nim o).LeftMoves = o.out.α := by rw [nim_def]; rfl #align pgame.left_moves_nim SetTheory.PGame.leftMoves_nim theorem rightMoves_nim (o : Ordinal) : (nim o).RightMoves = o.out.α := by rw [nim_def]; rfl #align pgame.right_moves_nim SetTheory.PGame.rightMoves_nim theorem moveLeft_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveLeft fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_left_nim_heq SetTheory.PGame.moveLeft_nim_hEq theorem moveRight_nim_hEq (o : Ordinal) : have : IsWellOrder (Quotient.out o).α (· < ·) := inferInstance HEq (nim o).moveRight fun i : o.out.α => nim (typein (· < ·) i) := by rw [nim_def]; rfl #align pgame.move_right_nim_heq SetTheory.PGame.moveRight_nim_hEq /-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/ noncomputable def toLeftMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).LeftMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (leftMoves_nim o).symm) #align pgame.to_left_moves_nim SetTheory.PGame.toLeftMovesNim /-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/ noncomputable def toRightMovesNim {o : Ordinal} : Set.Iio o ≃ (nim o).RightMoves := (enumIsoOut o).toEquiv.trans (Equiv.cast (rightMoves_nim o).symm) #align pgame.to_right_moves_nim SetTheory.PGame.toRightMovesNim @[simp] theorem toLeftMovesNim_symm_lt {o : Ordinal} (i : (nim o).LeftMoves) : ↑(toLeftMovesNim.symm i) < o := (toLeftMovesNim.symm i).prop #align pgame.to_left_moves_nim_symm_lt SetTheory.PGame.toLeftMovesNim_symm_lt @[simp] theorem toRightMovesNim_symm_lt {o : Ordinal} (i : (nim o).RightMoves) : ↑(toRightMovesNim.symm i) < o := (toRightMovesNim.symm i).prop #align pgame.to_right_moves_nim_symm_lt SetTheory.PGame.toRightMovesNim_symm_lt @[simp] theorem moveLeft_nim' {o : Ordinal.{u}} (i) : (nim o).moveLeft i = nim (toLeftMovesNim.symm i).val := (congr_heq (moveLeft_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_left_nim' SetTheory.PGame.moveLeft_nim' theorem moveLeft_nim {o : Ordinal} (i) : (nim o).moveLeft (toLeftMovesNim i) = nim i := by simp #align pgame.move_left_nim SetTheory.PGame.moveLeft_nim @[simp] theorem moveRight_nim' {o : Ordinal} (i) : (nim o).moveRight i = nim (toRightMovesNim.symm i).val := (congr_heq (moveRight_nim_hEq o).symm (cast_heq _ i)).symm #align pgame.move_right_nim' SetTheory.PGame.moveRight_nim' theorem moveRight_nim {o : Ordinal} (i) : (nim o).moveRight (toRightMovesNim i) = nim i := by simp #align pgame.move_right_nim SetTheory.PGame.moveRight_nim /-- A recursion principle for left moves of a nim game. -/ @[elab_as_elim] def leftMovesNimRecOn {o : Ordinal} {P : (nim o).LeftMoves → Sort*} (i : (nim o).LeftMoves) (H : ∀ a (H : a < o), P <| toLeftMovesNim ⟨a, H⟩) : P i := by rw [← toLeftMovesNim.apply_symm_apply i]; apply H #align pgame.left_moves_nim_rec_on SetTheory.PGame.leftMovesNimRecOn /-- A recursion principle for right moves of a nim game. -/ @[elab_as_elim] def rightMovesNimRecOn {o : Ordinal} {P : (nim o).RightMoves → Sort*} (i : (nim o).RightMoves) (H : ∀ a (H : a < o), P <| toRightMovesNim ⟨a, H⟩) : P i := by rw [← toRightMovesNim.apply_symm_apply i]; apply H #align pgame.right_moves_nim_rec_on SetTheory.PGame.rightMovesNimRecOn instance isEmpty_nim_zero_leftMoves : IsEmpty (nim 0).LeftMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_left_moves SetTheory.PGame.isEmpty_nim_zero_leftMoves instance isEmpty_nim_zero_rightMoves : IsEmpty (nim 0).RightMoves := by rw [nim_def] exact Ordinal.isEmpty_out_zero #align pgame.is_empty_nim_zero_right_moves SetTheory.PGame.isEmpty_nim_zero_rightMoves /-- `nim 0` has exactly the same moves as `0`. -/ def nimZeroRelabelling : nim 0 ≡r 0 := Relabelling.isEmpty _ #align pgame.nim_zero_relabelling SetTheory.PGame.nimZeroRelabelling theorem nim_zero_equiv : nim 0 ≈ 0 := Equiv.isEmpty _ #align pgame.nim_zero_equiv SetTheory.PGame.nim_zero_equiv noncomputable instance uniqueNimOneLeftMoves : Unique (nim 1).LeftMoves := (Equiv.cast <| leftMoves_nim 1).unique #align pgame.unique_nim_one_left_moves SetTheory.PGame.uniqueNimOneLeftMoves noncomputable instance uniqueNimOneRightMoves : Unique (nim 1).RightMoves := (Equiv.cast <| rightMoves_nim 1).unique #align pgame.unique_nim_one_right_moves SetTheory.PGame.uniqueNimOneRightMoves @[simp] theorem default_nim_one_leftMoves_eq : (default : (nim 1).LeftMoves) = @toLeftMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_left_moves_eq SetTheory.PGame.default_nim_one_leftMoves_eq @[simp] theorem default_nim_one_rightMoves_eq : (default : (nim 1).RightMoves) = @toRightMovesNim 1 ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := rfl #align pgame.default_nim_one_right_moves_eq SetTheory.PGame.default_nim_one_rightMoves_eq @[simp] theorem toLeftMovesNim_one_symm (i) : (@toLeftMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_left_moves_nim_one_symm SetTheory.PGame.toLeftMovesNim_one_symm @[simp] theorem toRightMovesNim_one_symm (i) : (@toRightMovesNim 1).symm i = ⟨0, Set.mem_Iio.mpr zero_lt_one⟩ := by simp [eq_iff_true_of_subsingleton] #align pgame.to_right_moves_nim_one_symm SetTheory.PGame.toRightMovesNim_one_symm theorem nim_one_moveLeft (x) : (nim 1).moveLeft x = nim 0 := by simp #align pgame.nim_one_move_left SetTheory.PGame.nim_one_moveLeft theorem nim_one_moveRight (x) : (nim 1).moveRight x = nim 0 := by simp #align pgame.nim_one_move_right SetTheory.PGame.nim_one_moveRight /-- `nim 1` has exactly the same moves as `star`. -/ def nimOneRelabelling : nim 1 ≡r star := by rw [nim_def] refine' ⟨_, _, fun i => _, fun j => _⟩ any_goals dsimp; apply Equiv.equivOfUnique all_goals simp; exact nimZeroRelabelling #align pgame.nim_one_relabelling SetTheory.PGame.nimOneRelabelling theorem nim_one_equiv : nim 1 ≈ star := nimOneRelabelling.equiv #align pgame.nim_one_equiv SetTheory.PGame.nim_one_equiv @[simp] theorem nim_birthday (o : Ordinal) : (nim o).birthday = o := by induction' o using Ordinal.induction with o IH rw [nim_def, birthday_def] dsimp rw [max_eq_right le_rfl] convert lsub_typein o with i exact IH _ (typein_lt_self i) #align pgame.nim_birthday SetTheory.PGame.nim_birthday @[simp] theorem neg_nim (o : Ordinal) : -nim o = nim o := by induction' o using Ordinal.induction with o IH rw [nim_def]; dsimp; congr <;> funext i <;> exact IH _ (Ordinal.typein_lt_self i) #align pgame.neg_nim SetTheory.PGame.neg_nim instance nim_impartial (o : Ordinal) : Impartial (nim o) := by induction' o using Ordinal.induction with o IH rw [impartial_def, neg_nim] refine' ⟨equiv_rfl, fun i => _, fun i => _⟩ <;> simpa using IH _ (typein_lt_self _) #align pgame.nim_impartial SetTheory.PGame.nim_impartial theorem nim_fuzzy_zero_of_ne_zero {o : Ordinal} (ho : o ≠ 0) : nim o ‖ 0 := by rw [Impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le] rw [← Ordinal.pos_iff_ne_zero] at ho exact ⟨(Ordinal.principalSegOut ho).top, by simp⟩ #align pgame.nim_fuzzy_zero_of_ne_zero SetTheory.PGame.nim_fuzzy_zero_of_ne_zero @[simp] theorem nim_add_equiv_zero_iff (o₁ o₂ : Ordinal) : (nim o₁ + nim o₂ ≈ 0) ↔ o₁ = o₂ := by constructor · refine' not_imp_not.1 fun hne : _ ≠ _ => (Impartial.not_equiv_zero_iff (nim o₁ + nim o₂)).2 _ wlog h : o₁ < o₂ · exact (fuzzy_congr_left add_comm_equiv).1 (this _ _ hne.symm (hne.lt_or_lt.resolve_left h)) rw [Impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂] refine' ⟨toLeftMovesAdd (Sum.inr _), _⟩ · exact (Ordinal.principalSegOut h).top · -- Porting note: squeezed simp simpa only [Ordinal.typein_top, Ordinal.type_lt, PGame.add_moveLeft_inr, PGame.moveLeft_mk] using (Impartial.add_self (nim o₁)).2 · rintro rfl exact Impartial.add_self (nim o₁) #align pgame.nim_add_equiv_zero_iff SetTheory.PGame.nim_add_equiv_zero_iff @[simp] theorem nim_add_fuzzy_zero_iff {o₁ o₂ : Ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ := by rw [iff_not_comm, Impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff] #align pgame.nim_add_fuzzy_zero_iff SetTheory.PGame.nim_add_fuzzy_zero_iff @[simp] theorem nim_equiv_iff_eq {o₁ o₂ : Ordinal} : (nim o₁ ≈ nim o₂) ↔ o₁ = o₂ := by rw [Impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff] #align pgame.nim_equiv_iff_eq SetTheory.PGame.nim_equiv_iff_eq /-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the game is equivalent to -/ noncomputable def grundyValue : ∀ _ : PGame.{u}, Ordinal.{u} | G => Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) termination_by grundyValue G => G decreasing_by pgame_wf_tac #align pgame.grundy_value SetTheory.PGame.grundyValue theorem grundyValue_eq_mex_left (G : PGame) : grundyValue G = Ordinal.mex.{u, u} fun i => grundyValue (G.moveLeft i) := by rw [grundyValue] #align pgame.grundy_value_eq_mex_left SetTheory.PGame.grundyValue_eq_mex_left /-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero] revert i₂ rw [nim_def] intro i₂
have h' : ∃ i : G.LeftMoves, grundyValue (G.moveLeft i) = Ordinal.typein (Quotient.out (grundyValue G)).r i₂ := by revert i₂ rw [grundyValue_eq_mex_left] intro i₂ have hnotin : _ ∉ _ := fun hin => (le_not_le_of_lt (Ordinal.typein_lt_self i₂)).2 (csInf_le' hin) simpa using hnotin
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h := Ordinal.ne_mex.{u, u} (fun i ↦ grundyValue (moveLeft G i)) rw [heq] at h exact (h i₁).irrefl · intro i₂ rw [add_moveLeft_inr, ← Impartial.exists_left_move_equiv_iff_fuzzy_zero] revert i₂ rw [nim_def] intro i₂
Mathlib.SetTheory.Game.Nim.271_0.mmFMhRYSjViKjcP
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of nim, namely the game of nim corresponding to the games Grundy value -/ theorem equiv_nim_grundyValue : ∀ (G : PGame.{u}) [G.Impartial], G ≈ nim (grundyValue G) | G => by rw [Impartial.equiv_iff_add_equiv_zero, ← Impartial.forall_leftMoves_fuzzy_iff_equiv_zero] intro i apply leftMoves_add_cases i · intro i₁ rw [add_moveLeft_inl] apply (fuzzy_congr_left (add_congr_left (Equiv.symm (equiv_nim_grundyValue (G.moveLeft i₁))))).1 rw [nim_add_fuzzy_zero_iff] intro heq rw [eq_comm, grundyValue_eq_mex_left G] at heq -- Porting note: added universe annotation, argument have h
Mathlib_SetTheory_Game_Nim