state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) ⊢ ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by
rw [eq_compl_iff_isCompl.mpr h₃.symm]
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) ⊢ ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ (Set.range (BinaryCofan.inl c))ᶜ
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm]
exact fun _ => or_not
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm]
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) ⊢ Nonempty (IsColimit c)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not
refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_1 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) ⊢ {T : Type u} → (X ⟶ T) → (Y ⟶ T) → (c.pt ⟶ T)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ ·
intro T f g x
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ ·
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_1 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : c.pt ⊢ T
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x
exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩)
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_2 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) ⊢ ∀ {T : Type u} (f : X ⟶ T) (g : Y ⟶ T), (BinaryCofan.inl c ≫ fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })) = f
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) ·
intro T f g
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) ·
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_2 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T ⊢ (BinaryCofan.inl c ≫ fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })) = f
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g
funext x
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_2.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := left } ⊢ (BinaryCofan.inl c ≫ fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })) x = f x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x
dsimp
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_2.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := left } ⊢ (if h : BinaryCofan.inl c x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := BinaryCofan.inl c x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := BinaryCofan.inl c x, property := (_ : BinaryCofan.inl c x ∈ Set.range (BinaryCofan.inr c)) })) = f x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp
simp [h₁.eq_iff]
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) ⊢ ∀ {T : Type u} (f : X ⟶ T) (g : Y ⟶ T), (BinaryCofan.inr c ≫ fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })) = g
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] ·
intro T f g
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] ·
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T ⊢ (BinaryCofan.inr c ≫ fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })) = g
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g
funext x
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := right } ⊢ (BinaryCofan.inr c ≫ fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })) x = g x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x
dsimp
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := right } ⊢ (if h : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := BinaryCofan.inr c x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := BinaryCofan.inr c x, property := (_ : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inr c)) })) = g x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp
simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index]
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := right } ⊢ ∀ (x_1 : X) (h : BinaryCofan.inl c x_1 = BinaryCofan.inr c x), f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := BinaryCofan.inr c x, property := (_ : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inl c)) }) = g x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index]
intro y e
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index]
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := right } y : X e : BinaryCofan.inl c y = BinaryCofan.inr c x ⊢ f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := BinaryCofan.inr c x, property := (_ : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inl c)) }) = g x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e
have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this✝ : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := right } y : X e : BinaryCofan.inl c y = BinaryCofan.inr c x this : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inl c) ⊓ Set.range (BinaryCofan.inr c) ⊢ f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := BinaryCofan.inr c x, property := (_ : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inl c)) }) = g x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩
rw [disjoint_iff.mp h₃.1] at this
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_3.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this✝ : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u f : X ⟶ T g : Y ⟶ T x : (pair X Y).obj { as := right } y : X e : BinaryCofan.inl c y = BinaryCofan.inr c x this : BinaryCofan.inr c x ∈ ⊥ ⊢ f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := BinaryCofan.inr c x, property := (_ : BinaryCofan.inr c x ∈ Set.range (BinaryCofan.inl c)) }) = g x
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this
exact this.elim
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_4 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) ⊢ ∀ {T : Type u} (f : X ⟶ T) (g : Y ⟶ T) (m : c.pt ⟶ T), BinaryCofan.inl c ≫ m = f → BinaryCofan.inr c ≫ m = g → m = fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then f ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else g ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim ·
rintro T _ _ m rfl rfl
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim ·
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_4 X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u m : c.pt ⟶ T ⊢ m = fun x => if h : x ∈ Set.range (BinaryCofan.inl c) then (BinaryCofan.inl c ≫ m) ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else (BinaryCofan.inr c ≫ m) ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl
funext x
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_4.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u m : c.pt ⟶ T x : c.pt ⊢ m x = if h : x ∈ Set.range (BinaryCofan.inl c) then (BinaryCofan.inl c ≫ m) ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h }) else (BinaryCofan.inr c ≫ m) ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) })
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x
dsimp
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case mpr.intro.intro.refine'_4.h X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u m : c.pt ⟶ T x : c.pt ⊢ m x = if h : x ∈ Set.range (BinaryCofan.inl c) then m (BinaryCofan.inl c ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h })) else m (BinaryCofan.inr c ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) }))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp
split_ifs
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case pos X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u m : c.pt ⟶ T x : c.pt h✝ : x ∈ Set.range (BinaryCofan.inl c) ⊢ m x = m (BinaryCofan.inl c ((Equiv.ofInjective (BinaryCofan.inl c) h₁).symm { val := x, property := h✝ }))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;>
exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;>
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
case neg X Y : Type u c : BinaryCofan X Y h₁ : Injective (BinaryCofan.inl c) h₂ : Injective (BinaryCofan.inr c) h₃ : IsCompl (Set.range (BinaryCofan.inl c)) (Set.range (BinaryCofan.inr c)) this : ∀ (x : ((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := left }), x ∈ Set.range (BinaryCofan.inl c) ∨ x ∈ Set.range (BinaryCofan.inr c) T : Type u m : c.pt ⟶ T x : c.pt h✝ : x ∉ Set.range (BinaryCofan.inl c) ⊢ m x = m (BinaryCofan.inr c ((Equiv.ofInjective (BinaryCofan.inr c) h₂).symm { val := x, property := (_ : x ∈ Set.range (BinaryCofan.inr c)) }))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;>
exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;>
Mathlib.CategoryTheory.Limits.Shapes.Types.302_0.ctQAUYXLRXnvMGw
theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr)
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y : Type u f : X ⟶ Y inst✝ : Mono f ⊢ IsColimit (BinaryCofan.mk f Subtype.val)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by
apply Nonempty.some
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by
Mathlib.CategoryTheory.Limits.Shapes.Types.350_0.ctQAUYXLRXnvMGw
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y))
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y : Type u f : X ⟶ Y inst✝ : Mono f ⊢ Nonempty (IsColimit (BinaryCofan.mk f Subtype.val))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some
rw [binaryCofan_isColimit_iff]
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some
Mathlib.CategoryTheory.Limits.Shapes.Types.350_0.ctQAUYXLRXnvMGw
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y))
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y : Type u f : X ⟶ Y inst✝ : Mono f ⊢ Injective (BinaryCofan.inl (BinaryCofan.mk f Subtype.val)) ∧ Injective (BinaryCofan.inr (BinaryCofan.mk f Subtype.val)) ∧ IsCompl (Set.range (BinaryCofan.inl (BinaryCofan.mk f Subtype.val))) (Set.range (BinaryCofan.inr (BinaryCofan.mk f Subtype.val)))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff]
refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff]
Mathlib.CategoryTheory.Limits.Shapes.Types.350_0.ctQAUYXLRXnvMGw
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y))
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y : Type u f : X ⟶ Y inst✝ : Mono f ⊢ IsCompl (Set.range (BinaryCofan.inl (BinaryCofan.mk f Subtype.val))) (Set.range (BinaryCofan.inr (BinaryCofan.mk f Subtype.val)))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩
symm
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.350_0.ctQAUYXLRXnvMGw
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y))
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y : Type u f : X ⟶ Y inst✝ : Mono f ⊢ IsCompl (Set.range (BinaryCofan.inr (BinaryCofan.mk f Subtype.val))) (Set.range (BinaryCofan.inl (BinaryCofan.mk f Subtype.val)))
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm
rw [← eq_compl_iff_isCompl]
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm
Mathlib.CategoryTheory.Limits.Shapes.Types.350_0.ctQAUYXLRXnvMGw
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y))
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y : Type u f : X ⟶ Y inst✝ : Mono f ⊢ Set.range (BinaryCofan.inr (BinaryCofan.mk f Subtype.val)) = (Set.range (BinaryCofan.inl (BinaryCofan.mk f Subtype.val)))ᶜ
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl]
exact Subtype.range_val
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl]
Mathlib.CategoryTheory.Limits.Shapes.Types.350_0.ctQAUYXLRXnvMGw
/-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y))
Mathlib_CategoryTheory_Limits_Shapes_Types
J : Type v F : J → Type u inst✝ : Small.{u, v} J this : Small.{u, max u v} ((j : J) → F j) s : Cone (Discrete.functor F) m : s.pt ⟶ { pt := Shrink.{u, max u v} ((j : J) → F j), π := Discrete.natTrans fun x f => match x, f with | { as := j }, f => (equivShrink ((j : J) → F j)).symm f j }.pt w : ∀ (j : Discrete J), m ≫ { pt := Shrink.{u, max u v} ((j : J) → F j), π := Discrete.natTrans fun x f => match x, f with | { as := j }, f => (equivShrink ((j : J) → F j)).symm f j }.π.app j = s.π.app j x : s.pt j : J ⊢ (equivShrink ((j : J) → F j)).symm (m x) j = (equivShrink ((j : J) → F j)).symm ((fun s x => (equivShrink ((j : J) → F j)) fun j => s.π.app { as := j } x) s x) j
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by
simpa using (congr_fun (w ⟨j⟩) x : _)
/-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by
Mathlib.CategoryTheory.Limits.Shapes.Types.403_0.ctQAUYXLRXnvMGw
/-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone
Mathlib_CategoryTheory_Limits_Shapes_Types
J : Type v F : J → TypeMax s : Cocone (Discrete.functor F) m : { pt := (j : J) × F j, ι := Discrete.natTrans fun x x_1 => match x, x_1 with | { as := j }, x => { fst := j, snd := x } }.pt ⟶ s.pt w : ∀ (j : Discrete J), { pt := (j : J) × F j, ι := Discrete.natTrans fun x x_1 => match x, x_1 with | { as := j }, x => { fst := j, snd := x } }.ι.app j ≫ m = s.ι.app j ⊢ m = (fun s x => s.ι.app { as := x.fst } x.snd) s
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by
funext ⟨j, x⟩
/-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by
Mathlib.CategoryTheory.Limits.Shapes.Types.442_0.ctQAUYXLRXnvMGw
/-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone
Mathlib_CategoryTheory_Limits_Shapes_Types
case h J : Type v F : J → TypeMax s : Cocone (Discrete.functor F) m : { pt := (j : J) × F j, ι := Discrete.natTrans fun x x_1 => match x, x_1 with | { as := j }, x => { fst := j, snd := x } }.pt ⟶ s.pt w : ∀ (j : Discrete J), { pt := (j : J) × F j, ι := Discrete.natTrans fun x x_1 => match x, x_1 with | { as := j }, x => { fst := j, snd := x } }.ι.app j ≫ m = s.ι.app j j : J x : F j ⊢ m { fst := j, snd := x } = (fun s x => s.ι.app { as := x.fst } x.snd) s { fst := j, snd := x }
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩
exact congr_fun (w ⟨j⟩) x
/-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.442_0.ctQAUYXLRXnvMGw
/-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h ⊢ { l // l ≫ Fork.ι (Fork.ofι f w) = Fork.ι s ∧ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι f w).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (Fork.ofι f w) = Fork.ι s → m = l }
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by
refine' ⟨fun i => _, _, _⟩
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
case refine'_1 X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h i : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ ((Functor.const WalkingParallelPair).obj (Fork.ofι f w).pt).obj WalkingParallelPair.zero
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ ·
apply Classical.choose (t (s.ι i) _)
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ ·
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h i : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ g (Fork.ι s i) = h (Fork.ι s i)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _)
apply congr_fun s.condition i
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _)
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
case refine'_2 X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h ⊢ (fun i => Classical.choose (_ : ∃! x, f x = Fork.ι s i)) ≫ Fork.ι (Fork.ofι f w) = Fork.ι s
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i ·
funext i
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i ·
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
case refine'_2.h X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h i : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ ((fun i => Classical.choose (_ : ∃! x, f x = Fork.ι s i)) ≫ Fork.ι (Fork.ofι f w)) i = Fork.ι s i
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i
exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
case refine'_3 X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h ⊢ ∀ {m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι f w).pt).obj WalkingParallelPair.zero}, m ≫ Fork.ι (Fork.ofι f w) = Fork.ι s → m = fun i => Classical.choose (_ : ∃! x, f x = Fork.ι s i)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 ·
intro m hm
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 ·
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
case refine'_3 X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι f w).pt).obj WalkingParallelPair.zero hm : m ≫ Fork.ι (Fork.ofι f w) = Fork.ι s ⊢ m = fun i => Classical.choose (_ : ∃! x, f x = Fork.ι s i)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm
funext i
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
case refine'_3.h X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : ∀ (y : Y), g y = h y → ∃! x, f x = y s : Fork g h m : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⟶ ((Functor.const WalkingParallelPair).obj (Fork.ofι f w).pt).obj WalkingParallelPair.zero hm : m ≫ Fork.ι (Fork.ofι f w) = Fork.ι s i : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ m i = Classical.choose (_ : ∃! x, f x = Fork.ι s i)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i
exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i)
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i
Mathlib.CategoryTheory.Limits.Shapes.Types.478_0.ctQAUYXLRXnvMGw
/-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w)
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y ⊢ ∃! x, f x = y
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by
let y' : PUnit ⟶ Y := fun _ => y
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y ⊢ ∃! x, f x = y
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y
have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h ⊢ ∃! x, f x = y
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy
refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h ⊢ ∀ (y_1 : X), (fun x => f x = y) y_1 → y_1 = ↑(Fork.IsLimit.lift' t y' hy') PUnit.unit
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩
intro x' hx'
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h x' : X hx' : f x' = y ⊢ x' = ↑(Fork.IsLimit.lift' t y' hy') PUnit.unit
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx'
suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this]
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx'
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h x' : X hx' : f x' = y this : (fun x => x') = ↑(Fork.IsLimit.lift' t y' hy') ⊢ x' = ↑(Fork.IsLimit.lift' t y' hy') PUnit.unit
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by
rw [← this]
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h x' : X hx' : f x' = y ⊢ (fun x => x') = ↑(Fork.IsLimit.lift' t y' hy')
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this]
apply Fork.IsLimit.hom_ext t
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this]
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h x' : X hx' : f x' = y ⊢ (fun x => x') ≫ Fork.ι (Fork.ofι f w) = ↑(Fork.IsLimit.lift' t y' hy') ≫ Fork.ι (Fork.ofι f w)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t
funext ⟨⟩
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h t : IsLimit (Fork.ofι f w) y : Y hy : g y = h y y' : PUnit.{u + 1} ⟶ Y := fun x => y hy' : y' ≫ g = y' ≫ h x' : X hx' : f x' = y ⊢ ((fun x => x') ≫ Fork.ι (Fork.ofι f w)) PUnit.unit = (↑(Fork.IsLimit.lift' t y' hy') ≫ Fork.ι (Fork.ofι f w)) PUnit.unit
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩
apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.496_0.ctQAUYXLRXnvMGw
/-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h s : Fork g h i : ((Functor.const WalkingParallelPair).obj s.pt).obj WalkingParallelPair.zero ⊢ g (Fork.ι s i) = h (Fork.ι s i)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by
apply congr_fun s.condition i
/-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by
Mathlib.CategoryTheory.Limits.Shapes.Types.516_0.ctQAUYXLRXnvMGw
/-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f : X ⟶ Y g h : Y ⟶ Z w : f ≫ g = f ≫ h ⊢ (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by
rfl
@[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by
Mathlib.CategoryTheory.Limits.Shapes.Types.533_0.ctQAUYXLRXnvMGw
@[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y s : Cofork f g a b : Y h : CoequalizerRel f g a b ⊢ Cofork.π s a = Cofork.π s b
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by
cases h
/-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by
Mathlib.CategoryTheory.Limits.Shapes.Types.554_0.ctQAUYXLRXnvMGw
/-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone
Mathlib_CategoryTheory_Limits_Shapes_Types
case Rel X Y Z : Type u f g : X ⟶ Y s : Cofork f g x✝ : X ⊢ Cofork.π s (f x✝) = Cofork.π s (g x✝)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h
apply congr_fun s.condition
/-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h
Mathlib.CategoryTheory.Limits.Shapes.Types.554_0.ctQAUYXLRXnvMGw
/-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U ⊢ π ⁻¹' (π '' U) = U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by
have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H]
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U ⊢ ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by
rintro _ _ ⟨x⟩
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case Rel X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U x : X ⊢ f x ∈ U ↔ g x ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩
change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case Rel X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U x : X ⊢ x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U
rw [H]
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) ⊢ π ⁻¹' (π '' U) = U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically
have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto }
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) ⊢ ∀ (x : Y), x ∈ U ↔ x ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by
tauto
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) ⊢ ∀ {x y : Y}, (x ∈ U ↔ y ∈ U) → (y ∈ U ↔ x ∈ U)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by
tauto
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) ⊢ ∀ {x y z : Y}, (x ∈ U ↔ y ∈ U) → (y ∈ U ↔ z ∈ U) → (x ∈ U ↔ z ∈ U)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by
tauto
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U ⊢ π ⁻¹' (π '' U) = U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto }
ext
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto }
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ : Y ⊢ x✝ ∈ π ⁻¹' (π '' U) ↔ x✝ ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext
constructor
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h.mp X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ : Y ⊢ x✝ ∈ π ⁻¹' (π '' U) → x✝ ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor ·
rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one]
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor ·
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h.mp X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ : Y ⊢ x✝ ∈ ((coequalizerColimit f g).cocone.ι.app WalkingParallelPair.one ≫ (IsColimit.coconePointUniqueUpToIso h (coequalizerColimit f g).isColimit).inv) ⁻¹' (((coequalizerColimit f g).cocone.ι.app WalkingParallelPair.one ≫ (IsColimit.coconePointUniqueUpToIso h (coequalizerColimit f g).isColimit).inv) '' U) → x✝ ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one]
rintro ⟨y, hy, e'⟩
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one]
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h.mp.intro.intro X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ y : Y hy : y ∈ U e' : ((coequalizerColimit f g).cocone.ι.app WalkingParallelPair.one ≫ (IsColimit.coconePointUniqueUpToIso h (coequalizerColimit f g).isColimit).inv) y = ((coequalizerColimit f g).cocone.ι.app WalkingParallelPair.one ≫ (IsColimit.coconePointUniqueUpToIso h (coequalizerColimit f g).isColimit).inv) x✝ ⊢ x✝ ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩
dsimp at e'
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h.mp.intro.intro X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ y : Y hy : y ∈ U e' : (IsColimit.coconePointUniqueUpToIso h (coequalizerColimit f g).isColimit).inv (Cofork.π (coequalizerColimit f g).cocone y) = (IsColimit.coconePointUniqueUpToIso h (coequalizerColimit f g).isColimit).inv (Cofork.π (coequalizerColimit f g).cocone x✝) ⊢ x✝ ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e'
replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e'
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e'
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h.mp.intro.intro X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ y : Y hy : y ∈ U e' : Cofork.π (coequalizerColimit f g).cocone y = Cofork.π (coequalizerColimit f g).cocone x✝ ⊢ x✝ ∈ U
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e' replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e'
exact (eqv.eqvGen_iff.mp (EqvGen.mono lem (Quot.exact _ e'))).mp hy
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e' replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e'
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
case h.mpr X Y Z : Type u f g : X ⟶ Y π : Y ⟶ Z e : f ≫ π = g ≫ π h : IsColimit (Cofork.ofπ π e) U : Set Y H : f ⁻¹' U = g ⁻¹' U lem : ∀ (x y : Y), CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U x✝ : Y ⊢ x✝ ∈ U → x✝ ∈ π ⁻¹' (π '' U)
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e' replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e' exact (eqv.eqvGen_iff.mp (EqvGen.mono lem (Quot.exact _ e'))).mp hy ·
exact fun hx => ⟨_, hx, rfl⟩
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e' replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e' exact (eqv.eqvGen_iff.mp (EqvGen.mono lem (Quot.exact _ e'))).mp hy ·
Mathlib.CategoryTheory.Limits.Shapes.Types.570_0.ctQAUYXLRXnvMGw
/-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U
Mathlib_CategoryTheory_Limits_Shapes_Types
W X Y Z : Type u f✝ : X ⟶ Z g✝ : Y ⟶ Z f : X ⟶ Z g : Y ⟶ Z ⊢ ∀ (s : PullbackCone f g), (fun s x => { val := (PullbackCone.fst s x, PullbackCone.snd s x), property := (_ : (PullbackCone.fst s ≫ f) x = (PullbackCone.snd s ≫ g) x) }) s ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst s
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e' replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e' exact (eqv.eqvGen_iff.mp (EqvGen.mono lem (Quot.exact _ e'))).mp hy · exact fun hx => ⟨_, hx, rfl⟩ #align category_theory.limits.types.coequalizer_preimage_image_eq_of_preimage_eq CategoryTheory.Limits.Types.coequalizer_preimage_image_eq_of_preimage_eq /-- The categorical coequalizer in `Type u` is the quotient by `f g ~ g x`. -/ noncomputable def coequalizerIso : coequalizer f g ≅ _root_.Quot (CoequalizerRel f g) := colimit.isoColimitCocone (coequalizerColimit f g) #align category_theory.limits.types.coequalizer_iso CategoryTheory.Limits.Types.coequalizerIso @[elementwise (attr := simp)] theorem coequalizerIso_π_comp_hom : coequalizer.π f g ≫ (coequalizerIso f g).hom = Quot.mk (CoequalizerRel f g) := colimit.isoColimitCocone_ι_hom (coequalizerColimit f g) WalkingParallelPair.one #align category_theory.limits.types.coequalizer_iso_π_comp_hom CategoryTheory.Limits.Types.coequalizerIso_π_comp_hom -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem coequalizerIso_quot_comp_inv : ↾Quot.mk (CoequalizerRel f g) ≫ (coequalizerIso f g).inv = coequalizer.π f g := rfl #align category_theory.limits.types.coequalizer_iso_quot_comp_inv CategoryTheory.Limits.Types.coequalizerIso_quot_comp_inv end Cofork section Pullback -- #synth HasPullbacks.{u} (Type u) instance : HasPullbacks.{u} (Type u) := -- FIXME does not work via `inferInstance` despite `#synth HasPullbacks.{u} (Type u)` succeeding. -- https://github.com/leanprover-community/mathlib4/issues/5752 -- inferInstance hasPullbacks_of_hasWidePullbacks.{u} (Type u) open CategoryTheory.Limits.WalkingPair open CategoryTheory.Limits.WalkingCospan open CategoryTheory.Limits.WalkingCospan.Hom variable {W X Y Z : Type u} variable (f : X ⟶ Z) (g : Y ⟶ Z) -- porting note: removed @[nolint has_nonempty_instance] /-- The usual explicit pullback in the category of types, as a subtype of the product. The full `LimitCone` data is bundled as `pullbackLimitCone f g`. -/ abbrev PullbackObj : Type u := { p : X × Y // f p.1 = g p.2 } #align category_theory.limits.types.pullback_obj CategoryTheory.Limits.Types.PullbackObj -- `PullbackObj f g` comes with a coercion to the product type `X × Y`. example (p : PullbackObj f g) : X × Y := p /-- The explicit pullback cone on `PullbackObj f g`. This is bundled with the `IsLimit` data as `pullbackLimitCone f g`. -/ abbrev pullbackCone : Limits.PullbackCone f g := PullbackCone.mk (fun p : PullbackObj f g => p.1.1) (fun p => p.1.2) (funext fun p => p.2) #align category_theory.limits.types.pullback_cone CategoryTheory.Limits.Types.pullbackCone /-- The explicit pullback in the category of types, bundled up as a `LimitCone` for given `f` and `g`. -/ @[simps] def pullbackLimitCone (f : X ⟶ Z) (g : Y ⟶ Z) : Limits.LimitCone (cospan f g) where cone := pullbackCone f g isLimit := PullbackCone.isLimitAux _ (fun s x => ⟨⟨s.fst x, s.snd x⟩, congr_fun s.condition x⟩) (by
aesop
/-- The explicit pullback in the category of types, bundled up as a `LimitCone` for given `f` and `g`. -/ @[simps] def pullbackLimitCone (f : X ⟶ Z) (g : Y ⟶ Z) : Limits.LimitCone (cospan f g) where cone := pullbackCone f g isLimit := PullbackCone.isLimitAux _ (fun s x => ⟨⟨s.fst x, s.snd x⟩, congr_fun s.condition x⟩) (by
Mathlib.CategoryTheory.Limits.Shapes.Types.658_0.ctQAUYXLRXnvMGw
/-- The explicit pullback in the category of types, bundled up as a `LimitCone` for given `f` and `g`. -/ @[simps] def pullbackLimitCone (f : X ⟶ Z) (g : Y ⟶ Z) : Limits.LimitCone (cospan f g) where cone
Mathlib_CategoryTheory_Limits_Shapes_Types
W X Y Z : Type u f✝ : X ⟶ Z g✝ : Y ⟶ Z f : X ⟶ Z g : Y ⟶ Z ⊢ ∀ (s : PullbackCone f g), (fun s x => { val := (PullbackCone.fst s x, PullbackCone.snd s x), property := (_ : (PullbackCone.fst s ≫ f) x = (PullbackCone.snd s ≫ g) x) }) s ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd s
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import Mathlib.CategoryTheory.Limits.Types import Mathlib.CategoryTheory.Limits.Shapes.Products import Mathlib.CategoryTheory.Limits.Shapes.BinaryProducts import Mathlib.CategoryTheory.Limits.Shapes.Terminal import Mathlib.CategoryTheory.ConcreteCategory.Basic import Mathlib.Tactic.CategoryTheory.Elementwise #align_import category_theory.limits.shapes.types from "leanprover-community/mathlib"@"5dc6092d09e5e489106865241986f7f2ad28d4c8" /-! # Special shapes for limits in `Type`. The general shape (co)limits defined in `CategoryTheory.Limits.Types` are intended for use through the limits API, and the actual implementation should mostly be considered "sealed". In this file, we provide definitions of the "standard" special shapes of limits in `Type`, giving the expected definitional implementation: * the terminal object is `PUnit` * the binary product of `X` and `Y` is `X × Y` * the product of a family `f : J → Type` is `Π j, f j` * the coproduct of a family `f : J → Type` is `Σ j, f j` * the binary coproduct of `X` and `Y` is the sum type `X ⊕ Y` * the equalizer of a pair of maps `(g, h)` is the subtype `{x : Y // g x = h x}` * the coequalizer of a pair of maps `(f, g)` is the quotient of `Y` by `∀ x : Y, f x ~ g x` * the pullback of `f : X ⟶ Z` and `g : Y ⟶ Z` is the subtype `{ p : X × Y // f p.1 = g p.2 }` of the product We first construct terms of `IsLimit` and `LimitCone`, and then provide isomorphisms with the types generated by the `HasLimit` API. As an example, when setting up the monoidal category structure on `Type` we use the `Types.terminalLimitCone` and `Types.binaryProductLimitCone` definitions. -/ universe v u open CategoryTheory Limits namespace CategoryTheory.Limits.Types example : HasProducts.{v} (Type v) := inferInstance example [UnivLE.{v, u}] : HasProducts.{v} (Type u) := inferInstance -- This shortcut instance is required in `Mathlib.CategoryTheory.Closed.Types`, -- although I don't understand why, and wish it wasn't. instance : HasProducts.{v} (Type v) := inferInstance /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`. -/ @[simp 1001] theorem pi_lift_π_apply {β : Type v} [Small.{u} β] (f : β → Type u) {P : Type u} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := congr_fun (limit.lift_π (Fan.mk P s) ⟨b⟩) x #align category_theory.limits.types.pi_lift_π_apply CategoryTheory.Limits.Types.pi_lift_π_apply /-- A restatement of `Types.Limit.lift_π_apply` that uses `Pi.π` and `Pi.lift`, with specialized universes. -/ theorem pi_lift_π_apply' {β : Type v} (f : β → Type v) {P : Type v} (s : ∀ b, P ⟶ f b) (b : β) (x : P) : (Pi.π f b : (piObj f) → f b) (@Pi.lift β _ _ f _ P s x) = s b x := by simp #align category_theory.limits.types.pi_lift_π_apply' CategoryTheory.Limits.Types.pi_lift_π_apply' /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`. -/ @[simp 1001] theorem pi_map_π_apply {β : Type v} [Small.{u} β] {f g : β → Type u} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := Limit.map_π_apply.{v, u} _ _ _ #align category_theory.limits.types.pi_map_π_apply CategoryTheory.Limits.Types.pi_map_π_apply /-- A restatement of `Types.Limit.map_π_apply` that uses `Pi.π` and `Pi.map`, with specialized universes. -/ theorem pi_map_π_apply' {β : Type v} {f g : β → Type v} (α : ∀ j, f j ⟶ g j) (b : β) (x) : (Pi.π g b : ∏ g → g b) (Pi.map α x) = α b ((Pi.π f b : ∏ f → f b) x) := by simp #align category_theory.limits.types.pi_map_π_apply' CategoryTheory.Limits.Types.pi_map_π_apply' /-- The category of types has `PUnit` as a terminal object. -/ def terminalLimitCone : Limits.LimitCone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cone := { pt := PUnit π := (Functor.uniqueFromEmpty _).hom } isLimit := { lift := fun _ _ => PUnit.unit fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext apply Subsingleton.elim } #align category_theory.limits.types.terminal_limit_cone CategoryTheory.Limits.Types.terminalLimitCone /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def terminalIso : ⊤_ Type u ≅ PUnit := limit.isoLimitCone terminalLimitCone.{u, 0} #align category_theory.limits.types.terminal_iso CategoryTheory.Limits.Types.terminalIso /-- The terminal object in `Type u` is `PUnit`. -/ noncomputable def isTerminalPunit : IsTerminal (PUnit : Type u) := terminalIsTerminal.ofIso terminalIso #align category_theory.limits.types.is_terminal_punit CategoryTheory.Limits.Types.isTerminalPunit -- porting note: the following three instances have been added to ease -- the automation in a definition in `AlgebraicTopology.SimplicialSet` noncomputable instance : Inhabited (⊤_ (Type u)) := ⟨@terminal.from (Type u) _ _ (ULift (Fin 1)) (ULift.up 0)⟩ instance : Subsingleton (⊤_ (Type u)) := ⟨fun a b => congr_fun (@Subsingleton.elim (_ ⟶ ⊤_ (Type u)) _ (fun _ => a) (fun _ => b)) (ULift.up (0 : Fin 1))⟩ noncomputable instance : Unique (⊤_ (Type u)) := Unique.mk' _ /-- A type is terminal if and only if it contains exactly one element. -/ noncomputable def isTerminalEquivUnique (X : Type u) : IsTerminal X ≃ Unique X := equivOfSubsingletonOfSubsingleton (fun h => ((Iso.toEquiv (terminalIsoIsTerminal h).symm).unique)) (fun _ => IsTerminal.ofIso terminalIsTerminal (Equiv.toIso (Equiv.equivOfUnique _ _))) /-- A type is terminal if and only if it is isomorphic to `PUnit`. -/ noncomputable def isTerminalEquivIsoPUnit (X : Type u) : IsTerminal X ≃ (X ≅ PUnit) := by calc IsTerminal X ≃ Unique X := isTerminalEquivUnique _ _ ≃ (X ≃ PUnit.{u + 1}) := uniqueEquivEquivUnique _ _ _ ≃ (X ≅ PUnit) := equivEquivIso /-- The category of types has `PEmpty` as an initial object. -/ def initialColimitCocone : Limits.ColimitCocone (Functor.empty (Type u)) where -- porting note: tidy was able to fill the structure automatically cocone := { pt := PEmpty ι := (Functor.uniqueFromEmpty _).inv } isColimit := { desc := fun _ => by rintro ⟨⟩ fac := fun _ => by rintro ⟨⟨⟩⟩ uniq := fun _ _ _ => by funext x; cases x } #align category_theory.limits.types.initial_colimit_cocone CategoryTheory.Limits.Types.initialColimitCocone /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def initialIso : ⊥_ Type u ≅ PEmpty := colimit.isoColimitCocone initialColimitCocone.{u, 0} #align category_theory.limits.types.initial_iso CategoryTheory.Limits.Types.initialIso /-- The initial object in `Type u` is `PEmpty`. -/ noncomputable def isInitialPunit : IsInitial (PEmpty : Type u) := initialIsInitial.ofIso initialIso #align category_theory.limits.types.is_initial_punit CategoryTheory.Limits.Types.isInitialPunit open CategoryTheory.Limits.WalkingPair -- We manually generate the other projection lemmas since the simp-normal form for the legs is -- otherwise not created correctly. /-- The product type `X × Y` forms a cone for the binary product of `X` and `Y`. -/ @[simps! pt] def binaryProductCone (X Y : Type u) : BinaryFan X Y := BinaryFan.mk _root_.Prod.fst _root_.Prod.snd #align category_theory.limits.types.binary_product_cone CategoryTheory.Limits.Types.binaryProductCone @[simp] theorem binaryProductCone_fst (X Y : Type u) : (binaryProductCone X Y).fst = _root_.Prod.fst := rfl #align category_theory.limits.types.binary_product_cone_fst CategoryTheory.Limits.Types.binaryProductCone_fst @[simp] theorem binaryProductCone_snd (X Y : Type u) : (binaryProductCone X Y).snd = _root_.Prod.snd := rfl #align category_theory.limits.types.binary_product_cone_snd CategoryTheory.Limits.Types.binaryProductCone_snd /-- The product type `X × Y` is a binary product for `X` and `Y`. -/ @[simps] def binaryProductLimit (X Y : Type u) : IsLimit (binaryProductCone X Y) where lift (s : BinaryFan X Y) x := (s.fst x, s.snd x) fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Prod.ext (congr_fun (w ⟨left⟩) x) (congr_fun (w ⟨right⟩) x) #align category_theory.limits.types.binary_product_limit CategoryTheory.Limits.Types.binaryProductLimit /-- The category of types has `X × Y`, the usual cartesian product, as the binary product of `X` and `Y`. -/ @[simps] def binaryProductLimitCone (X Y : Type u) : Limits.LimitCone (pair X Y) := ⟨_, binaryProductLimit X Y⟩ #align category_theory.limits.types.binary_product_limit_cone CategoryTheory.Limits.Types.binaryProductLimitCone /-- The categorical binary product in `Type u` is cartesian product. -/ noncomputable def binaryProductIso (X Y : Type u) : Limits.prod X Y ≅ X × Y := limit.isoLimitCone (binaryProductLimitCone X Y) #align category_theory.limits.types.binary_product_iso CategoryTheory.Limits.Types.binaryProductIso @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_fst (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.fst = Limits.prod.fst := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_fst CategoryTheory.Limits.Types.binaryProductIso_hom_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_hom_comp_snd (X Y : Type u) : (binaryProductIso X Y).hom ≫ _root_.Prod.snd = Limits.prod.snd := limit.isoLimitCone_hom_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_hom_comp_snd CategoryTheory.Limits.Types.binaryProductIso_hom_comp_snd @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_fst (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.fst = _root_.Prod.fst := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_fst CategoryTheory.Limits.Types.binaryProductIso_inv_comp_fst @[elementwise (attr := simp)] theorem binaryProductIso_inv_comp_snd (X Y : Type u) : (binaryProductIso X Y).inv ≫ Limits.prod.snd = _root_.Prod.snd := limit.isoLimitCone_inv_π (binaryProductLimitCone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_product_iso_inv_comp_snd CategoryTheory.Limits.Types.binaryProductIso_inv_comp_snd -- porting note: it was originally @[simps (config := { typeMd := reducible })] -- We add the option `type_md` to tell `@[simps]` to not treat homomorphisms `X ⟶ Y` in `Type*` as -- a function type /-- The functor which sends `X, Y` to the product type `X × Y`. -/ @[simps] def binaryProductFunctor : Type u ⥤ Type u ⥤ Type u where obj X := { obj := fun Y => X × Y map := fun { Y₁ Y₂} f => (binaryProductLimit X Y₂).lift (BinaryFan.mk _root_.Prod.fst (_root_.Prod.snd ≫ f)) } map {X₁ X₂} f := { app := fun Y => (binaryProductLimit X₂ Y).lift (BinaryFan.mk (_root_.Prod.fst ≫ f) _root_.Prod.snd) } #align category_theory.limits.types.binary_product_functor CategoryTheory.Limits.Types.binaryProductFunctor /-- The product functor given by the instance `HasBinaryProducts (Type u)` is isomorphic to the explicit binary product functor given by the product type. -/ noncomputable def binaryProductIsoProd : binaryProductFunctor ≅ (prod.functor : Type u ⥤ _) := by refine' NatIso.ofComponents (fun X => _) (fun _ => _) · refine' NatIso.ofComponents (fun Y => _) (fun _ => _) · exact ((limit.isLimit _).conePointUniqueUpToIso (binaryProductLimit X Y)).symm · apply Limits.prod.hom_ext <;> simp <;> rfl · ext : 2 apply Limits.prod.hom_ext <;> simp <;> rfl #align category_theory.limits.types.binary_product_iso_prod CategoryTheory.Limits.Types.binaryProductIsoProd /-- The sum type `X ⊕ Y` forms a cocone for the binary coproduct of `X` and `Y`. -/ @[simps!] def binaryCoproductCocone (X Y : Type u) : Cocone (pair X Y) := BinaryCofan.mk Sum.inl Sum.inr #align category_theory.limits.types.binary_coproduct_cocone CategoryTheory.Limits.Types.binaryCoproductCocone /-- The sum type `X ⊕ Y` is a binary coproduct for `X` and `Y`. -/ @[simps] def binaryCoproductColimit (X Y : Type u) : IsColimit (binaryCoproductCocone X Y) where desc := fun s : BinaryCofan X Y => Sum.elim s.inl s.inr fac _ j := Discrete.recOn j fun j => WalkingPair.casesOn j rfl rfl uniq _ _ w := funext fun x => Sum.casesOn x (congr_fun (w ⟨left⟩)) (congr_fun (w ⟨right⟩)) #align category_theory.limits.types.binary_coproduct_colimit CategoryTheory.Limits.Types.binaryCoproductColimit /-- The category of types has `X ⊕ Y`, as the binary coproduct of `X` and `Y`. -/ def binaryCoproductColimitCocone (X Y : Type u) : Limits.ColimitCocone (pair X Y) := ⟨_, binaryCoproductColimit X Y⟩ #align category_theory.limits.types.binary_coproduct_colimit_cocone CategoryTheory.Limits.Types.binaryCoproductColimitCocone /-- The categorical binary coproduct in `Type u` is the sum `X ⊕ Y`. -/ noncomputable def binaryCoproductIso (X Y : Type u) : Limits.coprod X Y ≅ Sum X Y := colimit.isoColimitCocone (binaryCoproductColimitCocone X Y) #align category_theory.limits.types.binary_coproduct_iso CategoryTheory.Limits.Types.binaryCoproductIso --open CategoryTheory.Type @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_hom (X Y : Type u) : Limits.coprod.inl ≫ (binaryCoproductIso X Y).hom = Sum.inl := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_hom (X Y : Type u) : Limits.coprod.inr ≫ (binaryCoproductIso X Y).hom = Sum.inr := colimit.isoColimitCocone_ι_hom (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_hom CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_hom @[elementwise (attr := simp)] theorem binaryCoproductIso_inl_comp_inv (X Y : Type u) : ↾(Sum.inl : X ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inl := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.left⟩ #align category_theory.limits.types.binary_coproduct_iso_inl_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inl_comp_inv @[elementwise (attr := simp)] theorem binaryCoproductIso_inr_comp_inv (X Y : Type u) : ↾(Sum.inr : Y ⟶ Sum X Y) ≫ (binaryCoproductIso X Y).inv = Limits.coprod.inr := colimit.isoColimitCocone_ι_inv (binaryCoproductColimitCocone X Y) ⟨WalkingPair.right⟩ #align category_theory.limits.types.binary_coproduct_iso_inr_comp_inv CategoryTheory.Limits.Types.binaryCoproductIso_inr_comp_inv open Function (Injective) theorem binaryCofan_isColimit_iff {X Y : Type u} (c : BinaryCofan X Y) : Nonempty (IsColimit c) ↔ Injective c.inl ∧ Injective c.inr ∧ IsCompl (Set.range c.inl) (Set.range c.inr) := by classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCoproductColimit X Y) ⟨WalkingPair.right⟩] dsimp [binaryCoproductCocone] refine' ⟨(h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inl_injective, (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.injective.comp Sum.inr_injective, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (h.coconePointUniqueUpToIso (binaryCoproductColimit X Y)).symm.toEquiv.bijective] simp · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g x exact if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂).symm ⟨x, (this x).resolve_left h⟩) · intro T f g funext x dsimp simp [h₁.eq_iff] · intro T f g funext x dsimp simp only [Set.mem_range, Equiv.ofInjective_symm_apply, dite_eq_right_iff, forall_exists_index] intro y e have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rw [disjoint_iff.mp h₃.1] at this exact this.elim · rintro T _ _ m rfl rfl funext x dsimp split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm #align category_theory.limits.types.binary_cofan_is_colimit_iff CategoryTheory.Limits.Types.binaryCofan_isColimit_iff /-- Any monomorphism in `Type` is a coproduct injection. -/ noncomputable def isCoprodOfMono {X Y : Type u} (f : X ⟶ Y) [Mono f] : IsColimit (BinaryCofan.mk f (Subtype.val : ↑(Set.range f)ᶜ → Y)) := by apply Nonempty.some rw [binaryCofan_isColimit_iff] refine' ⟨(mono_iff_injective f).mp inferInstance, Subtype.val_injective, _⟩ symm rw [← eq_compl_iff_isCompl] exact Subtype.range_val #align category_theory.limits.types.is_coprod_of_mono CategoryTheory.Limits.Types.isCoprodOfMono /-- The category of types has `Π j, f j` as the product of a type family `f : J → TypeMax.{v, u}`. -/ def productLimitCone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.LimitCone (Discrete.functor F) where cone := { pt := ∀ j, F j π := Discrete.natTrans (fun ⟨j⟩ f => f j) } isLimit := { lift := fun s x j => s.π.app ⟨j⟩ x uniq := fun s m w => funext fun x => funext fun j => (congr_fun (w ⟨j⟩) x : _) } #align category_theory.limits.types.product_limit_cone CategoryTheory.Limits.Types.productLimitCone /-- The categorical product in `TypeMax.{v, u}` is the type theoretic product `Π j, F j`. -/ noncomputable def productIso {J : Type v} (F : J → TypeMax.{v, u}) : ∏ F ≅ ∀ j, F j := limit.isoLimitCone (productLimitCone.{v, u} F) #align category_theory.limits.types.product_iso CategoryTheory.Limits.Types.productIso -- Porting note: was `@[elementwise (attr := simp)]`, but it produces a trivial lemma -- It should produce the lemma below. @[simp] theorem productIso_hom_comp_eval {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : ((productIso.{v, u} F).hom ≫ fun f => f j) = Pi.π F j := rfl #align category_theory.limits.types.product_iso_hom_comp_eval CategoryTheory.Limits.Types.productIso_hom_comp_eval @[simp] theorem productIso_hom_comp_eval_apply {J : Type v} (F : J → TypeMax.{v, u}) (j : J) (x) : ((productIso.{v, u} F).hom x) j = Pi.π F j x := rfl #align category_theory.limits.types.product_iso_hom_comp_eval_apply CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply @[elementwise (attr := simp)] theorem productIso_inv_comp_π {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => f j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ #align category_theory.limits.types.product_iso_inv_comp_π CategoryTheory.Limits.Types.productIso_inv_comp_π namespace Small variable {J : Type v} (F : J → Type u) [Small.{u} J] /-- A variant of `productLimitCone` using a `Small` hypothesis rather than a function to `TypeMax`. -/ noncomputable def productLimitCone : Limits.LimitCone (Discrete.functor F) where cone := { pt := Shrink (∀ j, F j) π := Discrete.natTrans (fun ⟨j⟩ f => (equivShrink (∀ j, F j)).symm f j) } isLimit := have : Small.{u} (∀ j, F j) := inferInstance { lift := fun s x => (equivShrink _) (fun j => s.π.app ⟨j⟩ x) uniq := fun s m w => funext fun x => Shrink.ext <| funext fun j => by simpa using (congr_fun (w ⟨j⟩) x : _) } /-- The categorical product in `Type u` indexed in `Type v` is the type theoretic product `Π j, F j`, after shrinking back to `Type u`. -/ noncomputable def productIso : (∏ F : Type u) ≅ Shrink.{u} (∀ j, F j) := limit.isoLimitCone (productLimitCone.{v, u} F) @[simp] theorem productIso_hom_comp_eval (j : J) : ((productIso.{v, u} F).hom ≫ fun f => (equivShrink (∀ j, F j)).symm f j) = Pi.π F j := limit.isoLimitCone_hom_π (productLimitCone.{v, u} F) ⟨j⟩ -- Porting note: -- `elementwise` seems to be broken. Applied to the previous lemma, it should produce: @[simp] theorem productIso_hom_comp_eval_apply (j : J) (x) : (equivShrink (∀ j, F j)).symm ((productIso F).hom x) j = Pi.π F j x := congr_fun (productIso_hom_comp_eval F j) x @[elementwise (attr := simp)] theorem productIso_inv_comp_π (j : J) : (productIso.{v, u} F).inv ≫ Pi.π F j = fun f => ((equivShrink (∀ j, F j)).symm f) j := limit.isoLimitCone_inv_π (productLimitCone.{v, u} F) ⟨j⟩ end Small /-- The category of types has `Σ j, f j` as the coproduct of a type family `f : J → Type`. -/ def coproductColimitCocone {J : Type v} (F : J → TypeMax.{v, u}) : Limits.ColimitCocone (Discrete.functor F) where cocone := { pt := Σj, F j ι := Discrete.natTrans (fun ⟨j⟩ x => ⟨j, x⟩)} isColimit := { desc := fun s x => s.ι.app ⟨x.1⟩ x.2 uniq := fun s m w => by funext ⟨j, x⟩ exact congr_fun (w ⟨j⟩) x } #align category_theory.limits.types.coproduct_colimit_cocone CategoryTheory.Limits.Types.coproductColimitCocone /-- The categorical coproduct in `Type u` is the type theoretic coproduct `Σ j, F j`. -/ noncomputable def coproductIso {J : Type v} (F : J → TypeMax.{v, u}) : ∐ F ≅ Σj, F j := colimit.isoColimitCocone (coproductColimitCocone F) #align category_theory.limits.types.coproduct_iso CategoryTheory.Limits.Types.coproductIso @[elementwise (attr := simp)] theorem coproductIso_ι_comp_hom {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : Sigma.ι F j ≫ (coproductIso F).hom = fun x : F j => (⟨j, x⟩ : Σj, F j) := colimit.isoColimitCocone_ι_hom (coproductColimitCocone F) ⟨j⟩ #align category_theory.limits.types.coproduct_iso_ι_comp_hom CategoryTheory.Limits.Types.coproductIso_ι_comp_hom -- porting note: was @[elementwise (attr := simp)], but it produces a trivial lemma -- removed simp attribute because it seems it never applies theorem coproductIso_mk_comp_inv {J : Type v} (F : J → TypeMax.{v, u}) (j : J) : (↾fun x : F j => (⟨j, x⟩ : Σj, F j)) ≫ (coproductIso F).inv = Sigma.ι F j := rfl #align category_theory.limits.types.coproduct_iso_mk_comp_inv CategoryTheory.Limits.Types.coproductIso_mk_comp_inv section Fork variable {X Y Z : Type u} (f : X ⟶ Y) {g h : Y ⟶ Z} (w : f ≫ g = f ≫ h) /-- Show the given fork in `Type u` is an equalizer given that any element in the "difference kernel" comes from `X`. The converse of `unique_of_type_equalizer`. -/ noncomputable def typeEqualizerOfUnique (t : ∀ y : Y, g y = h y → ∃! x : X, f x = y) : IsLimit (Fork.ofι _ w) := Fork.IsLimit.mk' _ fun s => by refine' ⟨fun i => _, _, _⟩ · apply Classical.choose (t (s.ι i) _) apply congr_fun s.condition i · funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).1 · intro m hm funext i exact (Classical.choose_spec (t (s.ι i) (congr_fun s.condition i))).2 _ (congr_fun hm i) #align category_theory.limits.types.type_equalizer_of_unique CategoryTheory.Limits.Types.typeEqualizerOfUnique /-- The converse of `type_equalizer_of_unique`. -/ theorem unique_of_type_equalizer (t : IsLimit (Fork.ofι _ w)) (y : Y) (hy : g y = h y) : ∃! x : X, f x = y := by let y' : PUnit ⟶ Y := fun _ => y have hy' : y' ≫ g = y' ≫ h := funext fun _ => hy refine' ⟨(Fork.IsLimit.lift' t _ hy').1 ⟨⟩, congr_fun (Fork.IsLimit.lift' t y' _).2 ⟨⟩, _⟩ intro x' hx' suffices (fun _ : PUnit => x') = (Fork.IsLimit.lift' t y' hy').1 by rw [← this] apply Fork.IsLimit.hom_ext t funext ⟨⟩ apply hx'.trans (congr_fun (Fork.IsLimit.lift' t _ hy').2 ⟨⟩).symm #align category_theory.limits.types.unique_of_type_equalizer CategoryTheory.Limits.Types.unique_of_type_equalizer theorem type_equalizer_iff_unique : Nonempty (IsLimit (Fork.ofι _ w)) ↔ ∀ y : Y, g y = h y → ∃! x : X, f x = y := ⟨fun i => unique_of_type_equalizer _ _ (Classical.choice i), fun k => ⟨typeEqualizerOfUnique f w k⟩⟩ #align category_theory.limits.types.type_equalizer_iff_unique CategoryTheory.Limits.Types.type_equalizer_iff_unique /-- Show that the subtype `{x : Y // g x = h x}` is an equalizer for the pair `(g,h)`. -/ def equalizerLimit : Limits.LimitCone (parallelPair g h) where cone := Fork.ofι (Subtype.val : { x : Y // g x = h x } → Y) (funext Subtype.prop) isLimit := Fork.IsLimit.mk' _ fun s => ⟨fun i => ⟨s.ι i, by apply congr_fun s.condition i⟩, rfl, fun hm => funext fun x => Subtype.ext (congr_fun hm x)⟩ #align category_theory.limits.types.equalizer_limit CategoryTheory.Limits.Types.equalizerLimit variable (g h) /-- The categorical equalizer in `Type u` is `{x : Y // g x = h x}`. -/ noncomputable def equalizerIso : equalizer g h ≅ { x : Y // g x = h x } := limit.isoLimitCone equalizerLimit #align category_theory.limits.types.equalizer_iso CategoryTheory.Limits.Types.equalizerIso -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem equalizerIso_hom_comp_subtype : (equalizerIso g h).hom ≫ Subtype.val = equalizer.ι g h := by rfl #align category_theory.limits.types.equalizer_iso_hom_comp_subtype CategoryTheory.Limits.Types.equalizerIso_hom_comp_subtype @[elementwise (attr := simp)] theorem equalizerIso_inv_comp_ι : (equalizerIso g h).inv ≫ equalizer.ι g h = Subtype.val := limit.isoLimitCone_inv_π equalizerLimit WalkingParallelPair.zero #align category_theory.limits.types.equalizer_iso_inv_comp_ι CategoryTheory.Limits.Types.equalizerIso_inv_comp_ι end Fork section Cofork variable {X Y Z : Type u} (f g : X ⟶ Y) /-- (Implementation) The relation to be quotiented to obtain the coequalizer. -/ inductive CoequalizerRel : Y → Y → Prop | Rel (x : X) : CoequalizerRel (f x) (g x) #align category_theory.limits.types.coequalizer_rel CategoryTheory.Limits.Types.CoequalizerRel /-- Show that the quotient by the relation generated by `f(x) ~ g(x)` is a coequalizer for the pair `(f, g)`. -/ def coequalizerColimit : Limits.ColimitCocone (parallelPair f g) where cocone := Cofork.ofπ (Quot.mk (CoequalizerRel f g)) (funext fun x => Quot.sound (CoequalizerRel.Rel x)) isColimit := Cofork.IsColimit.mk _ (fun s => Quot.lift s.π (fun a b (h : CoequalizerRel f g a b) => by cases h apply congr_fun s.condition)) (fun s => rfl) (fun s m hm => funext (fun x => Quot.inductionOn x (congr_fun hm))) #align category_theory.limits.types.coequalizer_colimit CategoryTheory.Limits.Types.coequalizerColimit /-- If `π : Y ⟶ Z` is an equalizer for `(f, g)`, and `U ⊆ Y` such that `f ⁻¹' U = g ⁻¹' U`, then `π ⁻¹' (π '' U) = U`. -/ theorem coequalizer_preimage_image_eq_of_preimage_eq (π : Y ⟶ Z) (e : f ≫ π = g ≫ π) (h : IsColimit (Cofork.ofπ π e)) (U : Set Y) (H : f ⁻¹' U = g ⁻¹' U) : π ⁻¹' (π '' U) = U := by have lem : ∀ x y, CoequalizerRel f g x y → (x ∈ U ↔ y ∈ U) := by rintro _ _ ⟨x⟩ change x ∈ f ⁻¹' U ↔ x ∈ g ⁻¹' U rw [H] -- porting note: tidy was able to fill the structure automatically have eqv : _root_.Equivalence fun x y => x ∈ U ↔ y ∈ U := { refl := by tauto symm := by tauto trans := by tauto } ext constructor · rw [← show _ = π from h.comp_coconePointUniqueUpToIso_inv (coequalizerColimit f g).2 WalkingParallelPair.one] rintro ⟨y, hy, e'⟩ dsimp at e' replace e' := (mono_iff_injective (h.coconePointUniqueUpToIso (coequalizerColimit f g).isColimit).inv).mp inferInstance e' exact (eqv.eqvGen_iff.mp (EqvGen.mono lem (Quot.exact _ e'))).mp hy · exact fun hx => ⟨_, hx, rfl⟩ #align category_theory.limits.types.coequalizer_preimage_image_eq_of_preimage_eq CategoryTheory.Limits.Types.coequalizer_preimage_image_eq_of_preimage_eq /-- The categorical coequalizer in `Type u` is the quotient by `f g ~ g x`. -/ noncomputable def coequalizerIso : coequalizer f g ≅ _root_.Quot (CoequalizerRel f g) := colimit.isoColimitCocone (coequalizerColimit f g) #align category_theory.limits.types.coequalizer_iso CategoryTheory.Limits.Types.coequalizerIso @[elementwise (attr := simp)] theorem coequalizerIso_π_comp_hom : coequalizer.π f g ≫ (coequalizerIso f g).hom = Quot.mk (CoequalizerRel f g) := colimit.isoColimitCocone_ι_hom (coequalizerColimit f g) WalkingParallelPair.one #align category_theory.limits.types.coequalizer_iso_π_comp_hom CategoryTheory.Limits.Types.coequalizerIso_π_comp_hom -- porting note: was @[elementwise], but it produces a trivial lemma @[simp] theorem coequalizerIso_quot_comp_inv : ↾Quot.mk (CoequalizerRel f g) ≫ (coequalizerIso f g).inv = coequalizer.π f g := rfl #align category_theory.limits.types.coequalizer_iso_quot_comp_inv CategoryTheory.Limits.Types.coequalizerIso_quot_comp_inv end Cofork section Pullback -- #synth HasPullbacks.{u} (Type u) instance : HasPullbacks.{u} (Type u) := -- FIXME does not work via `inferInstance` despite `#synth HasPullbacks.{u} (Type u)` succeeding. -- https://github.com/leanprover-community/mathlib4/issues/5752 -- inferInstance hasPullbacks_of_hasWidePullbacks.{u} (Type u) open CategoryTheory.Limits.WalkingPair open CategoryTheory.Limits.WalkingCospan open CategoryTheory.Limits.WalkingCospan.Hom variable {W X Y Z : Type u} variable (f : X ⟶ Z) (g : Y ⟶ Z) -- porting note: removed @[nolint has_nonempty_instance] /-- The usual explicit pullback in the category of types, as a subtype of the product. The full `LimitCone` data is bundled as `pullbackLimitCone f g`. -/ abbrev PullbackObj : Type u := { p : X × Y // f p.1 = g p.2 } #align category_theory.limits.types.pullback_obj CategoryTheory.Limits.Types.PullbackObj -- `PullbackObj f g` comes with a coercion to the product type `X × Y`. example (p : PullbackObj f g) : X × Y := p /-- The explicit pullback cone on `PullbackObj f g`. This is bundled with the `IsLimit` data as `pullbackLimitCone f g`. -/ abbrev pullbackCone : Limits.PullbackCone f g := PullbackCone.mk (fun p : PullbackObj f g => p.1.1) (fun p => p.1.2) (funext fun p => p.2) #align category_theory.limits.types.pullback_cone CategoryTheory.Limits.Types.pullbackCone /-- The explicit pullback in the category of types, bundled up as a `LimitCone` for given `f` and `g`. -/ @[simps] def pullbackLimitCone (f : X ⟶ Z) (g : Y ⟶ Z) : Limits.LimitCone (cospan f g) where cone := pullbackCone f g isLimit := PullbackCone.isLimitAux _ (fun s x => ⟨⟨s.fst x, s.snd x⟩, congr_fun s.condition x⟩) (by aesop) (by
aesop
/-- The explicit pullback in the category of types, bundled up as a `LimitCone` for given `f` and `g`. -/ @[simps] def pullbackLimitCone (f : X ⟶ Z) (g : Y ⟶ Z) : Limits.LimitCone (cospan f g) where cone := pullbackCone f g isLimit := PullbackCone.isLimitAux _ (fun s x => ⟨⟨s.fst x, s.snd x⟩, congr_fun s.condition x⟩) (by aesop) (by
Mathlib.CategoryTheory.Limits.Shapes.Types.658_0.ctQAUYXLRXnvMGw
/-- The explicit pullback in the category of types, bundled up as a `LimitCone` for given `f` and `g`. -/ @[simps] def pullbackLimitCone (f : X ⟶ Z) (g : Y ⟶ Z) : Limits.LimitCone (cospan f g) where cone
Mathlib_CategoryTheory_Limits_Shapes_Types
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ det M = ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, M (σ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by
simp [det_apply, Units.smul_def]
theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by
Mathlib.LinearAlgebra.Matrix.Determinant.74_0.U1f6HO8zRbnvZ95
theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ det (diagonal d) = ∏ i : n, d i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by
rw [det_apply']
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, diagonal d (σ i) i = ∏ i : n, d i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply']
refine' (Finset.sum_eq_single 1 _ _).trans _
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply']
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ∀ b ∈ univ, b ≠ 1 → ↑↑(sign b) * ∏ i : n, diagonal d (b i) i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ ·
rintro σ - h2
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ ·
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 ⊢ ↑↑(sign σ) * ∏ i : n, diagonal d (σ i) i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2
cases' not_forall.1 (mt Equiv.ext h2) with x h3
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1.intro m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 x : n h3 : ¬σ x = 1 x ⊢ ↑↑(sign σ) * ∏ i : n, diagonal d (σ i) i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3
convert mul_zero (ε σ)
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case h.e'_2.h.e'_6 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 x : n h3 : ¬σ x = 1 x ⊢ ∏ i : n, diagonal d (σ i) i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ)
apply Finset.prod_eq_zero (mem_univ x)
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ)
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case h.e'_2.h.e'_6 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R σ : Perm n h2 : σ ≠ 1 x : n h3 : ¬σ x = 1 x ⊢ diagonal d (σ x) x = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x)
exact if_neg h3
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x)
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_2 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ 1 ∉ univ → ↑↑(sign 1) * ∏ i : n, diagonal d (1 i) i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 ·
simp
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 ·
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_3 m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R d : n → R ⊢ ↑↑(sign 1) * ∏ i : n, diagonal d (1 i) i = ∏ i : n, d i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp ·
simp
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp ·
Mathlib.LinearAlgebra.Matrix.Determinant.78_0.U1f6HO8zRbnvZ95
@[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R ⊢ det 1 = 1
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by
rw [← diagonal_one]
@[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by
Mathlib.LinearAlgebra.Matrix.Determinant.96_0.U1f6HO8zRbnvZ95
@[simp] theorem det_one : det (1 : Matrix n n R) = 1
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R ⊢ det (diagonal fun x => 1) = 1
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one];
simp [-diagonal_one]
@[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one];
Mathlib.LinearAlgebra.Matrix.Determinant.96_0.U1f6HO8zRbnvZ95
@[simp] theorem det_one : det (1 : Matrix n n R) = 1
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : IsEmpty n A : Matrix n n R ⊢ det A = 1
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by
simp [det_apply]
theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by
Mathlib.LinearAlgebra.Matrix.Determinant.100_0.U1f6HO8zRbnvZ95
theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : IsEmpty n ⊢ det = const (Matrix n n R) 1
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by
ext
@[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by
Mathlib.LinearAlgebra.Matrix.Determinant.103_0.U1f6HO8zRbnvZ95
@[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1
Mathlib_LinearAlgebra_Matrix_Determinant
case h m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : IsEmpty n x✝ : Matrix n n R ⊢ det x✝ = const (Matrix n n R) 1 x✝
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext
exact det_isEmpty
@[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext
Mathlib.LinearAlgebra.Matrix.Determinant.103_0.U1f6HO8zRbnvZ95
@[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n✝ : Type u_2 inst✝⁷ : DecidableEq n✝ inst✝⁶ : Fintype n✝ inst✝⁵ : DecidableEq m inst✝⁴ : Fintype m R : Type v inst✝³ : CommRing R n : Type u_3 inst✝² : Unique n inst✝¹ : DecidableEq n inst✝ : Fintype n A : Matrix n n R ⊢ det A = A default default
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by
simp [det_apply, univ_unique]
/-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by
Mathlib.LinearAlgebra.Matrix.Determinant.114_0.U1f6HO8zRbnvZ95
/-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : Subsingleton n A : Matrix n n R k : n ⊢ det A = A k k
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by
have := uniqueOfSubsingleton k
theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by
Mathlib.LinearAlgebra.Matrix.Determinant.122_0.U1f6HO8zRbnvZ95
theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R inst✝ : Subsingleton n A : Matrix n n R k : n this : Unique n ⊢ det A = A k k
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k
convert det_unique A
theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k
Mathlib.LinearAlgebra.Matrix.Determinant.122_0.U1f6HO8zRbnvZ95
theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p ⊢ ∑ σ : Perm n, ↑↑(sign σ) * ∏ x : n, M (σ x) (p x) * N (p x) x = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by
obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p ⊢ ∃ i j, p i = p j ∧ i ≠ j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by
rw [← Finite.injective_iff_bijective, Injective] at H
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬∀ ⦃a₁ a₂ : n⦄, p a₁ = p a₂ → a₁ = a₂ ⊢ ∃ i j, p i = p j ∧ i ≠ j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H
push_neg at H
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ∃ a₁ a₂, p a₁ = p a₂ ∧ a₁ ≠ a₂ ⊢ ∃ i j, p i = p j ∧ i ≠ j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H
exact H
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
case intro.intro.intro m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j ⊢ ∑ σ : Perm n, ↑↑(sign σ) * ∏ x : n, M (σ x) (p x) * N (p x) x = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H
exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j σ : Perm n x✝ : σ ∈ univ ⊢ ↑↑(sign σ) * ∏ x : n, M (σ x) (p x) * N (p x) x + ↑↑(sign ((fun σ x => σ * Equiv.swap i j) σ x✝)) * ∏ x : n, M (((fun σ x => σ * Equiv.swap i j) σ x✝) x) (p x) * N (p x) x = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by
have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij])
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j σ : Perm n x✝ : σ ∈ univ ⊢ ∀ (x : n), M (σ x) (p x) = M ((σ * Equiv.swap i j) ((Equiv.swap i j) x)) (p ((Equiv.swap i j) x))
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by
simp [apply_swap_eq_self hpij]
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R p : n → n H : ¬Bijective p i j : n hpij : p i = p j hij : i ≠ j σ : Perm n x✝ : σ ∈ univ this : ∏ x : n, M (σ x) (p x) = ∏ x : n, M ((σ * Equiv.swap i j) x) (p x) ⊢ ↑↑(sign σ) * ∏ x : n, M (σ x) (p x) * N (p x) x + ↑↑(sign ((fun σ x => σ * Equiv.swap i j) σ x✝)) * ∏ x : n, M (((fun σ x => σ * Equiv.swap i j) σ x✝) x) (p x) * N (p x) x = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij])
simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij])
Mathlib.LinearAlgebra.Matrix.Determinant.134_0.U1f6HO8zRbnvZ95
theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, M (σ i) (p i) * N (p i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by
simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ ∑ x : Perm n, ∑ x_1 : n → n, ↑↑(sign x) * ∏ x_2 : n, M (x x_2) (x_1 x_2) * N (x_1 x_2) x_2 = ∑ p : n → n, ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, M (σ i) (p i) * N (p i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ]
rw [Finset.sum_comm]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ]
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R f : n → n x✝ : f ∈ univ hbij : f ∉ filter Bijective univ ⊢ ¬Bijective fun i => f i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by
simpa only [true_and_iff, mem_filter, mem_univ] using hbij
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant