state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R x✝³ x✝² : n → n x✝¹ : x✝³ ∈ filter Bijective univ x✝ : x✝² ∈ filter Bijective univ h : (fun p h => ofBijective p (_ : Bijective p)) x✝³ x✝¹ = (fun p h => ofBijective p (_ : Bijective p)) x✝² x✝ ⊢ x✝³ = x✝²
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by
injection h
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ ∑ τ : Perm n, ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, M (σ i) (τ i) * N (τ i) i = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by
simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j) = (∏ i : n, N (σ i) i) * (↑↑(sign σ) * ↑↑(sign ((Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (((Equiv.mulRight σ⁻¹) τ) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by
have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by
rw [← (σ⁻¹ : _ ≃ _).prod_comp]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n ⊢ ∏ i : n, M (τ (σ⁻¹ i)) (σ (σ⁻¹ i)) = ∏ j : n, M ((τ * σ⁻¹) j) j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp]
simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp]
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j ⊢ (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j) = (∏ i : n, N (σ i) i) * (↑↑(sign σ) * ↑↑(sign ((Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (((Equiv.mulRight σ⁻¹) τ) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply]
have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply]
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j ⊢ ↑↑(sign σ) * ↑↑(sign (τ * σ⁻¹)) = ↑↑(sign (τ * σ⁻¹ * σ))
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by
rw [mul_comm, sign_mul (τ * σ⁻¹)]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j ⊢ ↑↑(sign (τ * σ⁻¹)) * ↑↑(sign σ) = ↑↑(sign (τ * σ⁻¹) * sign σ)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)]
simp only [Int.cast_mul, Units.val_mul]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)]
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j ⊢ ↑↑(sign (τ * σ⁻¹ * σ)) = ↑↑(sign τ)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by
simp only [inv_mul_cancel_right]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j h : ↑↑(sign σ) * ↑↑(sign (τ * σ⁻¹)) = ↑↑(sign τ) ⊢ (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j) = (∏ i : n, N (σ i) i) * (↑↑(sign σ) * ↑↑(sign ((Equiv.mulRight σ⁻¹) τ))) * ∏ i : n, M (((Equiv.mulRight σ⁻¹) τ) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right]
simp_rw [Equiv.coe_mulRight, h]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right]
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R σ : Perm n x✝ : σ ∈ univ τ : Perm n this : ∏ j : n, M (τ j) (σ j) = ∏ j : n, M ((τ * σ⁻¹) j) j h : ↑↑(sign σ) * ↑↑(sign (τ * σ⁻¹)) = ↑↑(sign τ) ⊢ (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ j : n, M (τ j) (σ j) = (∏ i : n, N (σ i) i) * ↑↑(sign τ) * ∏ x : n, M ((τ * σ⁻¹) x) x
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h]
simp only [this]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h]
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix n n R ⊢ ∑ σ : Perm n, ∑ τ : Perm n, (∏ i : n, N (σ i) i) * (↑↑(sign σ) * ↑↑(sign τ)) * ∏ i : n, M (τ i) i = det M * det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by
simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc]
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by
Mathlib.LinearAlgebra.Matrix.Determinant.150_0.U1f6HO8zRbnvZ95
@[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N : Matrix m m R ⊢ det (M * N) = det (N * M)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by
rw [det_mul, det_mul, mul_comm]
/-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by
Mathlib.LinearAlgebra.Matrix.Determinant.199_0.U1f6HO8zRbnvZ95
/-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N P : Matrix m m R ⊢ det (M * (N * P)) = det (N * (M * P))
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by
rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul]
/-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by
Mathlib.LinearAlgebra.Matrix.Determinant.204_0.U1f6HO8zRbnvZ95
/-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P))
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M N P : Matrix m m R ⊢ det (M * N * P) = det (M * P * N)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by
rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul]
/-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by
Mathlib.LinearAlgebra.Matrix.Determinant.209_0.U1f6HO8zRbnvZ95
/-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : (Matrix m m R)ˣ N : Matrix m m R ⊢ det (↑M * N * ↑M⁻¹) = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by
rw [det_mul_right_comm, Units.mul_inv, one_mul]
theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by
Mathlib.LinearAlgebra.Matrix.Determinant.215_0.U1f6HO8zRbnvZ95
theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ det Mᵀ = det M
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by
rw [det_apply', det_apply']
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, Mᵀ (σ i) i = ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, M (σ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply']
refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply']
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R ⊢ ∀ (x : Perm n), ↑↑(sign x) * ∏ i : n, Mᵀ (x i) i = ↑↑(sign x⁻¹) * ∏ i : n, M (x⁻¹ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _
intro σ
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ↑↑(sign σ) * ∏ i : n, Mᵀ (σ i) i = ↑↑(sign σ⁻¹) * ∏ i : n, M (σ⁻¹ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ
rw [sign_inv]
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ↑↑(sign σ) * ∏ i : n, Mᵀ (σ i) i = ↑↑(sign σ) * ∏ i : n, M (σ⁻¹ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv]
congr 1
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv]
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
case e_a m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ∏ i : n, Mᵀ (σ i) i = ∏ i : n, M (σ⁻¹ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1
apply Fintype.prod_equiv σ
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
case e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n ⊢ ∀ (x : n), Mᵀ (σ x) x = M (σ⁻¹ (σ x)) (σ x)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ
intros
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
case e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R σ : Perm n x✝ : n ⊢ Mᵀ (σ x✝) x✝ = M (σ⁻¹ (σ x✝)) (σ x✝)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros
simp
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros
Mathlib.LinearAlgebra.Matrix.Determinant.226_0.U1f6HO8zRbnvZ95
/-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R σ : Perm n M : Matrix n n R ⊢ sign σ • detRowAlternating M = ↑↑(sign σ) * det M
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by
simp [Units.smul_def]
/-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by
Mathlib.LinearAlgebra.Matrix.Determinant.239_0.U1f6HO8zRbnvZ95
/-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R ⊢ det (submatrix A ⇑e ⇑e) = det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by
rw [det_apply', det_apply']
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R ⊢ ∑ σ : Perm n, ↑↑(sign σ) * ∏ i : n, submatrix A (⇑e) (⇑e) (σ i) i = ∑ σ : Perm m, ↑↑(sign σ) * ∏ i : m, A (σ i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply']
apply Fintype.sum_equiv (Equiv.permCongr e)
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply']
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R ⊢ ∀ (x : Perm n), ↑↑(sign x) * ∏ i : n, submatrix A (⇑e) (⇑e) (x i) i = ↑↑(sign ((permCongr e) x)) * ∏ i : m, A (((permCongr e) x) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e)
intro σ
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e)
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ↑↑(sign σ) * ∏ i : n, submatrix A (⇑e) (⇑e) (σ i) i = ↑↑(sign ((permCongr e) σ)) * ∏ i : m, A (((permCongr e) σ) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ
rw [Equiv.Perm.sign_permCongr e σ]
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
case h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ↑↑(sign σ) * ∏ i : n, submatrix A (⇑e) (⇑e) (σ i) i = ↑↑(sign σ) * ∏ i : m, A (((permCongr e) σ) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ]
congr 1
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ]
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
case h.e_a m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ∏ i : n, submatrix A (⇑e) (⇑e) (σ i) i = ∏ i : m, A (((permCongr e) σ) i) i
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1
apply Fintype.prod_equiv e
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
case h.e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n ⊢ ∀ (x : n), submatrix A (⇑e) (⇑e) (σ x) x = A (((permCongr e) σ) (e x)) (e x)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e
intro i
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
case h.e_a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R e : n ≃ m A : Matrix m m R σ : Perm n i : n ⊢ submatrix A (⇑e) (⇑e) (σ i) i = A (((permCongr e) σ) (e i)) (e i)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i
rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply]
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i
Mathlib.LinearAlgebra.Matrix.Determinant.245_0.U1f6HO8zRbnvZ95
/-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R σ : Perm n ⊢ det (PEquiv.toMatrix (toPEquiv σ)) = ↑↑(sign σ)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by
rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one]
/-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by
Mathlib.LinearAlgebra.Matrix.Determinant.268_0.U1f6HO8zRbnvZ95
/-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R c : R ⊢ det (c • A) = det ((diagonal fun x => c) * A)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by
rw [smul_eq_diagonal_mul]
theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by
Mathlib.LinearAlgebra.Matrix.Determinant.276_0.U1f6HO8zRbnvZ95
theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R c : R ⊢ det (diagonal fun x => c) * det A = c ^ Fintype.card n * det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by
simp [card_univ]
theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.276_0.U1f6HO8zRbnvZ95
theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁸ : DecidableEq n inst✝⁷ : Fintype n inst✝⁶ : DecidableEq m inst✝⁵ : Fintype m R : Type v inst✝⁴ : CommRing R α : Type u_3 inst✝³ : Monoid α inst✝² : DistribMulAction α R inst✝¹ : IsScalarTower α R R inst✝ : SMulCommClass α R R c : α A : Matrix n n R ⊢ det (c • A) = c ^ Fintype.card n • det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by
rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul]
@[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.283_0.U1f6HO8zRbnvZ95
@[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R ⊢ det (-A) = (-1) ^ Fintype.card n * det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by
rw [← det_smul, neg_one_smul]
theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.289_0.U1f6HO8zRbnvZ95
theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R ⊢ det (-A) = (-1) ^ Fintype.card n • det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by
rw [← det_smul_of_tower, Units.neg_smul, one_smul]
/-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.293_0.U1f6HO8zRbnvZ95
/-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R v : n → R A : Matrix n n R ⊢ (of fun i j => v j * A i j) = A * diagonal v
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by
ext
/-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by
Mathlib.LinearAlgebra.Matrix.Determinant.299_0.U1f6HO8zRbnvZ95
/-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A
Mathlib_LinearAlgebra_Matrix_Determinant
case a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R v : n → R A : Matrix n n R i✝ x✝ : n ⊢ of (fun i j => v j * A i j) i✝ x✝ = (A * diagonal v) i✝ x✝
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext
simp [mul_comm]
/-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext
Mathlib.LinearAlgebra.Matrix.Determinant.299_0.U1f6HO8zRbnvZ95
/-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R v : n → R A : Matrix n n R ⊢ det (A * diagonal v) = (∏ i : n, v i) * det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by
rw [det_mul, det_diagonal, mul_comm]
/-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.299_0.U1f6HO8zRbnvZ95
/-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁵ : DecidableEq n inst✝⁴ : Fintype n inst✝³ : DecidableEq m inst✝² : Fintype m R : Type v inst✝¹ : CommRing R S : Type w inst✝ : CommRing S f : R →+* S M : Matrix n n R ⊢ f (det M) = det ((RingHom.mapMatrix f) M)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by
simp [Matrix.det_apply', f.map_sum, f.map_prod]
theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by
Mathlib.LinearAlgebra.Matrix.Determinant.327_0.U1f6HO8zRbnvZ95
theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R j : n h : ∀ (i : n), A i j = 0 ⊢ det A = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by
rw [← det_transpose]
theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by
Mathlib.LinearAlgebra.Matrix.Determinant.367_0.U1f6HO8zRbnvZ95
theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R j : n h : ∀ (i : n), A i j = 0 ⊢ det Aᵀ = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose]
exact det_eq_zero_of_row_eq_zero j h
theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose]
Mathlib.LinearAlgebra.Matrix.Determinant.367_0.U1f6HO8zRbnvZ95
theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R i j : n i_ne_j : i ≠ j hij : ∀ (k : n), M k i = M k j ⊢ det M = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by
rw [← det_transpose, det_zero_of_row_eq i_ne_j]
/-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by
Mathlib.LinearAlgebra.Matrix.Determinant.380_0.U1f6HO8zRbnvZ95
/-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R i j : n i_ne_j : i ≠ j hij : ∀ (k : n), M k i = M k j ⊢ Mᵀ i = Mᵀ j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j]
exact funext hij
/-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j]
Mathlib.LinearAlgebra.Matrix.Determinant.380_0.U1f6HO8zRbnvZ95
/-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n u v : n → R ⊢ det (updateColumn M j (u + v)) = det (updateColumn M j u) + det (updateColumn M j v)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by
rw [← det_transpose, ← updateRow_transpose, det_updateRow_add]
theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by
Mathlib.LinearAlgebra.Matrix.Determinant.393_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n u v : n → R ⊢ det (updateRow Mᵀ j u) + det (updateRow Mᵀ j v) = det (updateColumn M j u) + det (updateColumn M j v)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add]
simp [updateRow_transpose, det_transpose]
theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add]
Mathlib.LinearAlgebra.Matrix.Determinant.393_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ det (updateColumn M j (s • u)) = s * det (updateColumn M j u)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by
rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul]
theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by
Mathlib.LinearAlgebra.Matrix.Determinant.404_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ s * det (updateRow Mᵀ j u) = s * det (updateColumn M j u)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul]
simp [updateRow_transpose, det_transpose]
theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul]
Mathlib.LinearAlgebra.Matrix.Determinant.404_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by
rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul']
theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by
Mathlib.LinearAlgebra.Matrix.Determinant.415_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R M : Matrix n n R j : n s : R u : n → R ⊢ s ^ (Fintype.card n - 1) * det (updateRow Mᵀ j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u)
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul']
simp [updateRow_transpose, det_transpose]
theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul']
Mathlib.LinearAlgebra.Matrix.Determinant.415_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u)
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B C : Matrix n n R hC : det C = 1 hA : A = B * C ⊢ det B * det C = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by
rw [hC, mul_one]
theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by
Mathlib.LinearAlgebra.Matrix.Determinant.429_0.U1f6HO8zRbnvZ95
theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B C : Matrix n n R hC : det C = 1 hA : A = C * B ⊢ det C * det B = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by
rw [hC, one_mul]
theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by
Mathlib.LinearAlgebra.Matrix.Determinant.437_0.U1f6HO8zRbnvZ95
theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j ⊢ det (updateRow A i (A i + A j)) = det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by
simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)]
theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.445_0.U1f6HO8zRbnvZ95
theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j ⊢ det (updateColumn A i fun k => A k i + A k j) = det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by
rw [← det_transpose, ← updateRow_transpose, ← det_transpose A]
theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.451_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j ⊢ det (updateRow Aᵀ i fun k => A k i + A k j) = det Aᵀ
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A]
exact det_updateRow_add_self Aᵀ hij
theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A]
Mathlib.LinearAlgebra.Matrix.Determinant.451_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j c : R ⊢ det (updateRow A i (A i + c • A j)) = det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by
simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)]
theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.457_0.U1f6HO8zRbnvZ95
theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j c : R ⊢ det (updateColumn A i fun k => A k i + c • A k j) = det A
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by
rw [← det_transpose, ← updateRow_transpose, ← det_transpose A]
theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by
Mathlib.LinearAlgebra.Matrix.Determinant.463_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i j : n hij : i ≠ j c : R ⊢ det (updateRow Aᵀ i fun k => A k i + c • A k j) = det Aᵀ
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A]
exact det_updateRow_add_smul_self Aᵀ hij c
theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A]
Mathlib.LinearAlgebra.Matrix.Determinant.463_0.U1f6HO8zRbnvZ95
theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R s : Finset n ⊢ ∀ (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by
induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R s : Finset n ⊢ ∀ (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by
induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R ⊢ ∀ (c : n → R), (∀ i ∉ ∅, c i = 0) → ∀ k ∉ ∅, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with
| empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R ⊢ ∀ (c : n → R), (∀ i ∉ ∅, c i = 0) → ∀ k ∉ ∅, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty =>
rintro c hs k - A_eq
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty =>
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq
have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ ∀ (i : n), c i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by
intro i
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n ⊢ c i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i
specialize hs i
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : i ∉ ∅ → c i = 0 ⊢ c i = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i
contrapose! hs
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j i : n hs : c i ≠ 0 ⊢ i ∉ ∅ ∧ c i ≠ 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs
simp [hs]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case empty m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs]
congr
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs]
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case empty.e_M m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 ⊢ A = B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr
ext i j
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case empty.e_M.a.h m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A B : Matrix n n R c : n → R hs : ∀ i ∉ ∅, c i = 0 k : n A_eq : ∀ (i j : n), A i j = B i j + c i * B k j this : ∀ (i : n), c i = 0 i j : n ⊢ A i j = B i j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j
rw [A_eq, this, zero_mul, add_zero]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R ⊢ ∀ (c : n → R), (∀ i_1 ∉ insert i s, c i_1 = 0) → ∀ k ∉ insert i s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero]
| @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero]
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R ⊢ ∀ (c : n → R), (∀ i_1 ∉ insert i s, c i_1 = 0) → ∀ k ∉ insert i s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih =>
intro c hs k hk A_eq
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih =>
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j ⊢ det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq
have hAi : A i = B i + c i • B k := funext (A_eq i)
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ det A = det B
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i)
rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i)
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.hij m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ i ≠ k
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] ·
exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ i_1 ∉ s, update c i 0 i_1 = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk ·
intro i' hi'
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : i' ∉ s ⊢ update c i 0 i' = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi'
rw [Function.update_apply]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi'
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : i' ∉ s ⊢ (if i' = i then 0 else c i') = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply]
split_ifs with hi'i
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply]
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case pos m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : i' ∉ s hi'i : i' = i ⊢ 0 = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i ·
rfl
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case neg m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' : n hi' : i' ∉ s hi'i : ¬i' = i ⊢ c i' = 0
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl ·
exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i)
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.k m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ n
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) ·
exact k
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ k ∉ s
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k ·
exact fun h => hk (Finset.mem_insert_of_mem h)
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k ⊢ ∀ (i_1 j : n), A i_1 j = updateRow B i (A i) i_1 j + update c i 0 i_1 * updateRow B i (A i) k j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) ·
intro i' j'
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = updateRow B i (A i) i' j' + update c i 0 i' * updateRow B i (A i) k j'
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j'
rw [updateRow_apply, Function.update_apply]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j'
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case insert.x m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n ⊢ A i' j' = (if i' = i then A i j' else B i' j') + (if i' = i then 0 else c i') * updateRow B i (A i) k j'
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply]
split_ifs with hi'i
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply]
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case pos m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : i' = i ⊢ A i' j' = A i j' + 0 * updateRow B i (A i) k j'
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i ·
simp [hi'i]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i ·
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
case neg m : Type u_1 n : Type u_2 inst✝⁴ : DecidableEq n inst✝³ : Fintype n inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R A : Matrix n n R i : n s : Finset n _hi : i ∉ s ih : ∀ {B : Matrix n n R} (c : n → R), (∀ i ∉ s, c i = 0) → ∀ k ∉ s, (∀ (i j : n), A i j = B i j + c i * B k j) → det A = det B B : Matrix n n R c : n → R hs : ∀ i_1 ∉ insert i s, c i_1 = 0 k : n hk : k ∉ insert i s A_eq : ∀ (i j : n), A i j = B i j + c i * B k j hAi : A i = B i + c i • B k i' j' : n hi'i : ¬i' = i ⊢ A i' j' = B i' j' + c i' * updateRow B i (A i) k j'
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i]
rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s]
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i]
Mathlib.LinearAlgebra.Matrix.Determinant.469_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) ⊢ ∀ (c : Fin n → R), (∀ (i : Fin n), k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by
refine' Fin.induction _ (fun k ih => _) k
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) ⊢ ∀ (c : Fin n → R), (∀ (i : Fin n), 0 < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;>
intro c hc M N h0 hsucc
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;>
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N ⊢ ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;>
intro c hc M N h0 hsucc
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;>
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j ⊢ det M = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc ·
congr
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc ·
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1.e_M m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j ⊢ M = N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr
ext i j
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1.e_M.a.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j i j : Fin (Nat.succ n) ⊢ M i j = N i j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j
refine' Fin.cases (h0 j) (fun i => _) i
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_1.e_M.a.h m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k : Fin (n + 1) c : Fin n → R hc : ∀ (i : Fin n), 0 < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j i✝ j : Fin (Nat.succ n) i : Fin n ⊢ M (Fin.succ i) j = N (Fin.succ i) j
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i
rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero]
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j ⊢ det M = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero]
set M' := updateRow M k.succ (N k.succ) with hM'
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero]
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
case refine'_2 m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) ⊢ det M = det N
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero] set M' := updateRow M k.succ (N k.succ) with hM'
have hM : M = updateRow M' k.succ (M' k.succ + c k • M (Fin.castSucc k)) := by ext i j by_cases hi : i = k.succ · simp [hi, hM', hsucc, updateRow_self] rw [updateRow_ne hi, hM', updateRow_ne hi]
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero] set M' := updateRow M k.succ (N k.succ) with hM'
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant
m : Type u_1 n✝ : Type u_2 inst✝⁴ : DecidableEq n✝ inst✝³ : Fintype n✝ inst✝² : DecidableEq m inst✝¹ : Fintype m R : Type v inst✝ : CommRing R n : ℕ k✝ : Fin (n + 1) k : Fin n ih : ∀ (c : Fin n → R), (∀ (i : Fin n), Fin.castSucc k < Fin.succ i → c i = 0) → ∀ {M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R}, (∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j) → (∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j) → det M = det N c : Fin n → R hc : ∀ (i : Fin n), Fin.succ k < Fin.succ i → c i = 0 M N : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R h0 : ∀ (j : Fin (Nat.succ n)), M 0 j = N 0 j hsucc : ∀ (i : Fin n) (j : Fin (Nat.succ n)), M (Fin.succ i) j = N (Fin.succ i) j + c i * M (Fin.castSucc i) j M' : Matrix (Fin (Nat.succ n)) (Fin (Nat.succ n)) R := updateRow M (Fin.succ k) (N (Fin.succ k)) hM' : M' = updateRow M (Fin.succ k) (N (Fin.succ k)) ⊢ M = updateRow M' (Fin.succ k) (M' (Fin.succ k) + c k • M (Fin.castSucc k))
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Chris Hughes, Anne Baanen -/ import Mathlib.Data.Matrix.PEquiv import Mathlib.Data.Matrix.Block import Mathlib.Data.Matrix.Notation import Mathlib.Data.Fintype.BigOperators import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Algebra.Algebra.Basic import Mathlib.Tactic.Ring import Mathlib.LinearAlgebra.Alternating.Basic import Mathlib.LinearAlgebra.Pi #align_import linear_algebra.matrix.determinant from "leanprover-community/mathlib"@"c3019c79074b0619edb4b27553a91b2e82242395" /-! # Determinant of a matrix This file defines the determinant of a matrix, `Matrix.det`, and its essential properties. ## Main definitions - `Matrix.det`: the determinant of a square matrix, as a sum over permutations - `Matrix.detRowAlternating`: the determinant, as an `AlternatingMap` in the rows of the matrix ## Main results - `det_mul`: the determinant of `A * B` is the product of determinants - `det_zero_of_row_eq`: the determinant is zero if there is a repeated row - `det_block_diagonal`: the determinant of a block diagonal matrix is a product of the blocks' determinants ## Implementation notes It is possible to configure `simp` to compute determinants. See the file `test/matrix.lean` for some examples. -/ universe u v w z open Equiv Equiv.Perm Finset Function namespace Matrix open Matrix BigOperators variable {m n : Type*} [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] variable {R : Type v} [CommRing R] -- mathport name: «exprε » local notation "ε " σ:arg => ((sign σ : ℤ) : R) /-- `det` is an `AlternatingMap` in the rows of the matrix. -/ def detRowAlternating : (n → R) [Λ^n]→ₗ[R] R := MultilinearMap.alternatization ((MultilinearMap.mkPiAlgebra R n R).compLinearMap LinearMap.proj) #align matrix.det_row_alternating Matrix.detRowAlternating /-- The determinant of a matrix given by the Leibniz formula. -/ abbrev det (M : Matrix n n R) : R := detRowAlternating M #align matrix.det Matrix.det theorem det_apply (M : Matrix n n R) : M.det = ∑ σ : Perm n, Equiv.Perm.sign σ • ∏ i, M (σ i) i := MultilinearMap.alternatization_apply _ M #align matrix.det_apply Matrix.det_apply -- This is what the old definition was. We use it to avoid having to change the old proofs below theorem det_apply' (M : Matrix n n R) : M.det = ∑ σ : Perm n, ε σ * ∏ i, M (σ i) i := by simp [det_apply, Units.smul_def] #align matrix.det_apply' Matrix.det_apply' @[simp] theorem det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i := by rw [det_apply'] refine' (Finset.sum_eq_single 1 _ _).trans _ · rintro σ - h2 cases' not_forall.1 (mt Equiv.ext h2) with x h3 convert mul_zero (ε σ) apply Finset.prod_eq_zero (mem_univ x) exact if_neg h3 · simp · simp #align matrix.det_diagonal Matrix.det_diagonal -- @[simp] -- Porting note: simp can prove this theorem det_zero (_ : Nonempty n) : det (0 : Matrix n n R) = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_zero #align matrix.det_zero Matrix.det_zero @[simp] theorem det_one : det (1 : Matrix n n R) = 1 := by rw [← diagonal_one]; simp [-diagonal_one] #align matrix.det_one Matrix.det_one theorem det_isEmpty [IsEmpty n] {A : Matrix n n R} : det A = 1 := by simp [det_apply] #align matrix.det_is_empty Matrix.det_isEmpty @[simp] theorem coe_det_isEmpty [IsEmpty n] : (det : Matrix n n R → R) = Function.const _ 1 := by ext exact det_isEmpty #align matrix.coe_det_is_empty Matrix.coe_det_isEmpty theorem det_eq_one_of_card_eq_zero {A : Matrix n n R} (h : Fintype.card n = 0) : det A = 1 := haveI : IsEmpty n := Fintype.card_eq_zero_iff.mp h det_isEmpty #align matrix.det_eq_one_of_card_eq_zero Matrix.det_eq_one_of_card_eq_zero /-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element. Although `Unique` implies `DecidableEq` and `Fintype`, the instances might not be syntactically equal. Thus, we need to fill in the args explicitly. -/ @[simp] theorem det_unique {n : Type*} [Unique n] [DecidableEq n] [Fintype n] (A : Matrix n n R) : det A = A default default := by simp [det_apply, univ_unique] #align matrix.det_unique Matrix.det_unique theorem det_eq_elem_of_subsingleton [Subsingleton n] (A : Matrix n n R) (k : n) : det A = A k k := by have := uniqueOfSubsingleton k convert det_unique A #align matrix.det_eq_elem_of_subsingleton Matrix.det_eq_elem_of_subsingleton theorem det_eq_elem_of_card_eq_one {A : Matrix n n R} (h : Fintype.card n = 1) (k : n) : det A = A k k := haveI : Subsingleton n := Fintype.card_le_one_iff_subsingleton.mp h.le det_eq_elem_of_subsingleton _ _ #align matrix.det_eq_elem_of_card_eq_one Matrix.det_eq_elem_of_card_eq_one theorem det_mul_aux {M N : Matrix n n R} {p : n → n} (H : ¬Bijective p) : (∑ σ : Perm n, ε σ * ∏ x, M (σ x) (p x) * N (p x) x) = 0 := by obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j := by rw [← Finite.injective_iff_bijective, Injective] at H push_neg at H exact H exact sum_involution (fun σ _ => σ * Equiv.swap i j) (fun σ _ => by have : (∏ x, M (σ x) (p x)) = ∏ x, M ((σ * Equiv.swap i j) x) (p x) := Fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]) simp [this, sign_swap hij, -sign_swap', prod_mul_distrib]) (fun σ _ _ => (not_congr mul_swap_eq_iff).mpr hij) (fun _ _ => mem_univ _) fun σ _ => mul_swap_involutive i j σ #align matrix.det_mul_aux Matrix.det_mul_aux @[simp] theorem det_mul (M N : Matrix n n R) : det (M * N) = det M * det N := calc det (M * N) = ∑ p : n → n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum, Fintype.piFinset_univ] rw [Finset.sum_comm] _ = ∑ p in (@univ (n → n) _).filter Bijective, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (p i) * N (p i) i := (Eq.symm <| sum_subset (filter_subset _ _) fun f _ hbij => det_mul_aux <| by simpa only [true_and_iff, mem_filter, mem_univ] using hbij) _ = ∑ τ : Perm n, ∑ σ : Perm n, ε σ * ∏ i, M (σ i) (τ i) * N (τ i) i := (sum_bij (fun p h => Equiv.ofBijective p (mem_filter.1 h).2) (fun _ _ => mem_univ _) (fun _ _ => rfl) (fun _ _ _ _ h => by injection h) fun b _ => ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩) _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * ε τ * ∏ j, M (τ j) (σ j) := by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc] _ = ∑ σ : Perm n, ∑ τ : Perm n, (∏ i, N (σ i) i) * (ε σ * ε τ) * ∏ i, M (τ i) i := (sum_congr rfl fun σ _ => Fintype.sum_equiv (Equiv.mulRight σ⁻¹) _ _ fun τ => by have : (∏ j, M (τ j) (σ j)) = ∏ j, M ((τ * σ⁻¹) j) j := by rw [← (σ⁻¹ : _ ≃ _).prod_comp] simp only [Equiv.Perm.coe_mul, apply_inv_self, Function.comp_apply] have h : ε σ * ε (τ * σ⁻¹) = ε τ := calc ε σ * ε (τ * σ⁻¹) = ε (τ * σ⁻¹ * σ) := by rw [mul_comm, sign_mul (τ * σ⁻¹)] simp only [Int.cast_mul, Units.val_mul] _ = ε τ := by simp only [inv_mul_cancel_right] simp_rw [Equiv.coe_mulRight, h] simp only [this]) _ = det M * det N := by simp only [det_apply', Finset.mul_sum, mul_comm, mul_left_comm, mul_assoc] #align matrix.det_mul Matrix.det_mul /-- The determinant of a matrix, as a monoid homomorphism. -/ def detMonoidHom : Matrix n n R →* R where toFun := det map_one' := det_one map_mul' := det_mul #align matrix.det_monoid_hom Matrix.detMonoidHom @[simp] theorem coe_detMonoidHom : (detMonoidHom : Matrix n n R → R) = det := rfl #align matrix.coe_det_monoid_hom Matrix.coe_detMonoidHom /-- On square matrices, `mul_comm` applies under `det`. -/ theorem det_mul_comm (M N : Matrix m m R) : det (M * N) = det (N * M) := by rw [det_mul, det_mul, mul_comm] #align matrix.det_mul_comm Matrix.det_mul_comm /-- On square matrices, `mul_left_comm` applies under `det`. -/ theorem det_mul_left_comm (M N P : Matrix m m R) : det (M * (N * P)) = det (N * (M * P)) := by rw [← Matrix.mul_assoc, ← Matrix.mul_assoc, det_mul, det_mul_comm M N, ← det_mul] #align matrix.det_mul_left_comm Matrix.det_mul_left_comm /-- On square matrices, `mul_right_comm` applies under `det`. -/ theorem det_mul_right_comm (M N P : Matrix m m R) : det (M * N * P) = det (M * P * N) := by rw [Matrix.mul_assoc, Matrix.mul_assoc, det_mul, det_mul_comm N P, ← det_mul] #align matrix.det_mul_right_comm Matrix.det_mul_right_comm -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((M : Matrix _ _ _) * N * (↑M⁻¹ : Matrix _ _ _)) = det N := by rw [det_mul_right_comm, Units.mul_inv, one_mul] #align matrix.det_units_conj Matrix.det_units_conj -- TODO(mathlib4#6607): fix elaboration so that the ascription isn't needed theorem det_units_conj' (M : (Matrix m m R)ˣ) (N : Matrix m m R) : det ((↑M⁻¹ : Matrix _ _ _) * N * (↑M : Matrix _ _ _)) = det N := det_units_conj M⁻¹ N #align matrix.det_units_conj' Matrix.det_units_conj' /-- Transposing a matrix preserves the determinant. -/ @[simp] theorem det_transpose (M : Matrix n n R) : Mᵀ.det = M.det := by rw [det_apply', det_apply'] refine' Fintype.sum_bijective _ inv_involutive.bijective _ _ _ intro σ rw [sign_inv] congr 1 apply Fintype.prod_equiv σ intros simp #align matrix.det_transpose Matrix.det_transpose /-- Permuting the columns changes the sign of the determinant. -/ theorem det_permute (σ : Perm n) (M : Matrix n n R) : (Matrix.det fun i => M (σ i)) = Perm.sign σ * M.det := ((detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_perm M σ).trans (by simp [Units.smul_def]) #align matrix.det_permute Matrix.det_permute /-- Permuting rows and columns with the same equivalence has no effect. -/ @[simp] theorem det_submatrix_equiv_self (e : n ≃ m) (A : Matrix m m R) : det (A.submatrix e e) = det A := by rw [det_apply', det_apply'] apply Fintype.sum_equiv (Equiv.permCongr e) intro σ rw [Equiv.Perm.sign_permCongr e σ] congr 1 apply Fintype.prod_equiv e intro i rw [Equiv.permCongr_apply, Equiv.symm_apply_apply, submatrix_apply] #align matrix.det_submatrix_equiv_self Matrix.det_submatrix_equiv_self /-- Reindexing both indices along the same equivalence preserves the determinant. For the `simp` version of this lemma, see `det_submatrix_equiv_self`; this one is unsuitable because `Matrix.reindex_apply` unfolds `reindex` first. -/ theorem det_reindex_self (e : m ≃ n) (A : Matrix m m R) : det (reindex e e A) = det A := det_submatrix_equiv_self e.symm A #align matrix.det_reindex_self Matrix.det_reindex_self /-- The determinant of a permutation matrix equals its sign. -/ @[simp] theorem det_permutation (σ : Perm n) : Matrix.det (σ.toPEquiv.toMatrix : Matrix n n R) = Perm.sign σ := by rw [← Matrix.mul_one (σ.toPEquiv.toMatrix : Matrix n n R), PEquiv.toPEquiv_mul_matrix, det_permute, det_one, mul_one] #align matrix.det_permutation Matrix.det_permutation theorem det_smul (A : Matrix n n R) (c : R) : det (c • A) = c ^ Fintype.card n * det A := calc det (c • A) = det ((diagonal fun _ => c) * A) := by rw [smul_eq_diagonal_mul] _ = det (diagonal fun _ => c) * det A := (det_mul _ _) _ = c ^ Fintype.card n * det A := by simp [card_univ] #align matrix.det_smul Matrix.det_smul @[simp] theorem det_smul_of_tower {α} [Monoid α] [DistribMulAction α R] [IsScalarTower α R R] [SMulCommClass α R R] (c : α) (A : Matrix n n R) : det (c • A) = c ^ Fintype.card n • det A := by rw [← smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul] #align matrix.det_smul_of_tower Matrix.det_smul_of_tower theorem det_neg (A : Matrix n n R) : det (-A) = (-1) ^ Fintype.card n * det A := by rw [← det_smul, neg_one_smul] #align matrix.det_neg Matrix.det_neg /-- A variant of `Matrix.det_neg` with scalar multiplication by `Units ℤ` instead of multiplication by `R`. -/ theorem det_neg_eq_smul (A : Matrix n n R) : det (-A) = (-1 : Units ℤ) ^ Fintype.card n • det A := by rw [← det_smul_of_tower, Units.neg_smul, one_smul] #align matrix.det_neg_eq_smul Matrix.det_neg_eq_smul /-- Multiplying each row by a fixed `v i` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_row (v : n → R) (A : Matrix n n R) : det (of fun i j => v j * A i j) = (∏ i, v i) * det A := calc det (of fun i j => v j * A i j) = det (A * diagonal v) := congr_arg det <| by ext simp [mul_comm] _ = (∏ i, v i) * det A := by rw [det_mul, det_diagonal, mul_comm] #align matrix.det_mul_row Matrix.det_mul_row /-- Multiplying each column by a fixed `v j` multiplies the determinant by the product of the `v`s. -/ theorem det_mul_column (v : n → R) (A : Matrix n n R) : det (of fun i j => v i * A i j) = (∏ i, v i) * det A := MultilinearMap.map_smul_univ _ v A #align matrix.det_mul_column Matrix.det_mul_column @[simp] theorem det_pow (M : Matrix m m R) (n : ℕ) : det (M ^ n) = det M ^ n := (detMonoidHom : Matrix m m R →* R).map_pow M n #align matrix.det_pow Matrix.det_pow section HomMap variable {S : Type w} [CommRing S] theorem _root_.RingHom.map_det (f : R →+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := by simp [Matrix.det_apply', f.map_sum, f.map_prod] #align ring_hom.map_det RingHom.map_det theorem _root_.RingEquiv.map_det (f : R ≃+* S) (M : Matrix n n R) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align ring_equiv.map_det RingEquiv.map_det theorem _root_.AlgHom.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S →ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toRingHom.map_det _ #align alg_hom.map_det AlgHom.map_det theorem _root_.AlgEquiv.map_det [Algebra R S] {T : Type z} [CommRing T] [Algebra R T] (f : S ≃ₐ[R] T) (M : Matrix n n S) : f M.det = Matrix.det (f.mapMatrix M) := f.toAlgHom.map_det _ #align alg_equiv.map_det AlgEquiv.map_det end HomMap @[simp] theorem det_conjTranspose [StarRing R] (M : Matrix m m R) : det Mᴴ = star (det M) := ((starRingEnd R).map_det _).symm.trans <| congr_arg star M.det_transpose #align matrix.det_conj_transpose Matrix.det_conjTranspose section DetZero /-! ### `det_zero` section Prove that a matrix with a repeated column has determinant equal to zero. -/ theorem det_eq_zero_of_row_eq_zero {A : Matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_coord_zero i (funext h) #align matrix.det_eq_zero_of_row_eq_zero Matrix.det_eq_zero_of_row_eq_zero theorem det_eq_zero_of_column_eq_zero {A : Matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 := by rw [← det_transpose] exact det_eq_zero_of_row_eq_zero j h #align matrix.det_eq_zero_of_column_eq_zero Matrix.det_eq_zero_of_column_eq_zero variable {M : Matrix n n R} {i j : n} /-- If a matrix has a repeated row, the determinant will be zero. -/ theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_eq_zero_of_eq M hij i_ne_j #align matrix.det_zero_of_row_eq Matrix.det_zero_of_row_eq /-- If a matrix has a repeated column, the determinant will be zero. -/ theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 := by rw [← det_transpose, det_zero_of_row_eq i_ne_j] exact funext hij #align matrix.det_zero_of_column_eq Matrix.det_zero_of_column_eq end DetZero theorem det_updateRow_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateRow M j <| u + v) = det (updateRow M j u) + det (updateRow M j v) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_add M j u v #align matrix.det_update_row_add Matrix.det_updateRow_add theorem det_updateColumn_add (M : Matrix n n R) (j : n) (u v : n → R) : det (updateColumn M j <| u + v) = det (updateColumn M j u) + det (updateColumn M j v) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_add] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_add Matrix.det_updateColumn_add theorem det_updateRow_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow M j <| s • u) = s * det (updateRow M j u) := (detRowAlternating : (n → R) [Λ^n]→ₗ[R] R).map_smul M j s u #align matrix.det_update_row_smul Matrix.det_updateRow_smul theorem det_updateColumn_smul (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn M j <| s • u) = s * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, det_updateRow_smul] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul Matrix.det_updateColumn_smul theorem det_updateRow_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateRow (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateRow M j u) := MultilinearMap.map_update_smul _ M j s u #align matrix.det_update_row_smul' Matrix.det_updateRow_smul' theorem det_updateColumn_smul' (M : Matrix n n R) (j : n) (s : R) (u : n → R) : det (updateColumn (s • M) j u) = s ^ (Fintype.card n - 1) * det (updateColumn M j u) := by rw [← det_transpose, ← updateRow_transpose, transpose_smul, det_updateRow_smul'] simp [updateRow_transpose, det_transpose] #align matrix.det_update_column_smul' Matrix.det_updateColumn_smul' section DetEq /-! ### `det_eq` section Lemmas showing the determinant is invariant under a variety of operations. -/ theorem det_eq_of_eq_mul_det_one {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = B * C) : det A = det B := calc det A = det (B * C) := congr_arg _ hA _ = det B * det C := (det_mul _ _) _ = det B := by rw [hC, mul_one] #align matrix.det_eq_of_eq_mul_det_one Matrix.det_eq_of_eq_mul_det_one theorem det_eq_of_eq_det_one_mul {A B : Matrix n n R} (C : Matrix n n R) (hC : det C = 1) (hA : A = C * B) : det A = det B := calc det A = det (C * B) := congr_arg _ hA _ = det C * det B := (det_mul _ _) _ = det B := by rw [hC, one_mul] #align matrix.det_eq_of_eq_det_one_mul Matrix.det_eq_of_eq_det_one_mul theorem det_updateRow_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateRow A i (A i + A j)) = det A := by simp [det_updateRow_add, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_self Matrix.det_updateRow_add_self theorem det_updateColumn_add_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) : det (updateColumn A i fun k => A k i + A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_self Aᵀ hij #align matrix.det_update_column_add_self Matrix.det_updateColumn_add_self theorem det_updateRow_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateRow A i (A i + c • A j)) = det A := by simp [det_updateRow_add, det_updateRow_smul, det_zero_of_row_eq hij (updateRow_self.trans (updateRow_ne hij.symm).symm)] #align matrix.det_update_row_add_smul_self Matrix.det_updateRow_add_smul_self theorem det_updateColumn_add_smul_self (A : Matrix n n R) {i j : n} (hij : i ≠ j) (c : R) : det (updateColumn A i fun k => A k i + c • A k j) = det A := by rw [← det_transpose, ← updateRow_transpose, ← det_transpose A] exact det_updateRow_add_smul_self Aᵀ hij c #align matrix.det_update_column_add_smul_self Matrix.det_updateColumn_add_smul_self theorem det_eq_of_forall_row_eq_smul_add_const_aux {A B : Matrix n n R} {s : Finset n} : ∀ (c : n → R) (_ : ∀ i, i ∉ s → c i = 0) (k : n) (_ : k ∉ s) (_: ∀ i j, A i j = B i j + c i * B k j), det A = det B := by induction s using Finset.induction_on generalizing B with | empty => rintro c hs k - A_eq have : ∀ i, c i = 0 := by intro i specialize hs i contrapose! hs simp [hs] congr ext i j rw [A_eq, this, zero_mul, add_zero] | @insert i s _hi ih => intro c hs k hk A_eq have hAi : A i = B i + c i • B k := funext (A_eq i) rw [@ih (updateRow B i (A i)) (Function.update c i 0), hAi, det_updateRow_add_smul_self] · exact mt (fun h => show k ∈ insert i s from h ▸ Finset.mem_insert_self _ _) hk · intro i' hi' rw [Function.update_apply] split_ifs with hi'i · rfl · exact hs i' fun h => hi' ((Finset.mem_insert.mp h).resolve_left hi'i) · exact k · exact fun h => hk (Finset.mem_insert_of_mem h) · intro i' j' rw [updateRow_apply, Function.update_apply] split_ifs with hi'i · simp [hi'i] rw [A_eq, updateRow_ne fun h : k = i => hk <| h ▸ Finset.mem_insert_self k s] #align matrix.det_eq_of_forall_row_eq_smul_add_const_aux Matrix.det_eq_of_forall_row_eq_smul_add_const_aux /-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/ theorem det_eq_of_forall_row_eq_smul_add_const {A B : Matrix n n R} (c : n → R) (k : n) (hk : c k = 0) (A_eq : ∀ i j, A i j = B i j + c i * B k j) : det A = det B := det_eq_of_forall_row_eq_smul_add_const_aux c (fun i => not_imp_comm.mp fun hi => Finset.mem_erase.mpr ⟨mt (fun h : i = k => show c i = 0 from h.symm ▸ hk) hi, Finset.mem_univ i⟩) k (Finset.not_mem_erase k Finset.univ) A_eq #align matrix.det_eq_of_forall_row_eq_smul_add_const Matrix.det_eq_of_forall_row_eq_smul_add_const theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero] set M' := updateRow M k.succ (N k.succ) with hM' have hM : M = updateRow M' k.succ (M' k.succ + c k • M (Fin.castSucc k)) := by
ext i j
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N := by refine' Fin.induction _ (fun k ih => _) k <;> intro c hc M N h0 hsucc · congr ext i j refine' Fin.cases (h0 j) (fun i => _) i rw [hsucc, hc i (Fin.succ_pos _), zero_mul, add_zero] set M' := updateRow M k.succ (N k.succ) with hM' have hM : M = updateRow M' k.succ (M' k.succ + c k • M (Fin.castSucc k)) := by
Mathlib.LinearAlgebra.Matrix.Determinant.513_0.U1f6HO8zRbnvZ95
theorem det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : Fin (n + 1)) : ∀ (c : Fin n → R) (_hc : ∀ i : Fin n, k < i.succ → c i = 0) {M N : Matrix (Fin n.succ) (Fin n.succ) R} (_h0 : ∀ j, M 0 j = N 0 j) (_hsucc : ∀ (i : Fin n) (j), M i.succ j = N i.succ j + c i * M (Fin.castSucc i) j), det M = det N
Mathlib_LinearAlgebra_Matrix_Determinant