state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : βˆ€ (c : R) {x : A}, x ∈ src✝.carrier β†’ c β€’ x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : βˆ€ (c : R) {x : A}, x ∈ src✝.carrier β†’ c β€’ x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊒ ⁅x, y⁆ ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : βˆ€ (c : R) {x : A}, x ∈ src✝.carrier β†’ c β€’ x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by
change ⁅x, y⁆ ∈ A'
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hx : x ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : βˆ€ (c : R) {x : A}, x ∈ src✝.carrier β†’ c β€’ x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : βˆ€ (c : R) {x : A}, x ∈ src✝.carrier β†’ c β€’ x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier ⊒ ⁅x, y⁆ ∈ A'
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A';
change x ∈ A' at hx
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A';
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hy : y ∈ { toAddSubmonoid := src✝.toAddSubmonoid, smul_mem' := (_ : βˆ€ (c : R) {x : A}, x ∈ src✝.carrier β†’ c β€’ x ∈ src✝.carrier) }.toAddSubmonoid.toAddSubsemigroup.carrier hx : x ∈ A' ⊒ ⁅x, y⁆ ∈ A'
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx;
change y ∈ A' at hy
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx;
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' ⊒ ⁅x, y⁆ ∈ A'
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy
rw [LieRing.of_associative_ring_bracket]
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' ⊒ x * y - y * x ∈ A'
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket]
have hxy := A'.mul_mem hx hy
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket]
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' hxy : x * y ∈ A' ⊒ x * y - y * x ∈ A'
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy
have hyx := A'.mul_mem hy hx
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u inst✝² : CommRing R A : Type v inst✝¹ : Ring A inst✝ : Algebra R A A' : Subalgebra R A src✝ : Submodule R A := Subalgebra.toSubmodule A' x y : A hx : x ∈ A' hy : y ∈ A' hxy : x * y ∈ A' hyx : y * x ∈ A' ⊒ x * y - y * x ∈ A'
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy have hyx := A'.mul_mem hy hx
exact Submodule.sub_mem (Subalgebra.toSubmodule A') hxy hyx
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy have hyx := A'.mul_mem hy hx
Mathlib.Algebra.Lie.OfAssociative.322_0.ll51mLev4p7Z1wP
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A
Mathlib_Algebra_Lie_OfAssociative
R : Type u M₁ : Type v Mβ‚‚ : Type w inst✝⁴ : CommRing R inst✝³ : AddCommGroup M₁ inst✝² : Module R M₁ inst✝¹ : AddCommGroup Mβ‚‚ inst✝ : Module R Mβ‚‚ e : M₁ ≃ₗ[R] Mβ‚‚ src✝ : Module.End R M₁ ≃ₗ[R] Module.End R Mβ‚‚ := conj e f g : Module.End R M₁ ⊒ (conj e) ⁅f, g⁆ = ⁅(conj e) f, (conj e) g⁆
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy have hyx := A'.mul_mem hy hx exact Submodule.sub_mem (Subalgebra.toSubmodule A') hxy hyx } #align lie_subalgebra_of_subalgebra lieSubalgebraOfSubalgebra namespace LinearEquiv variable {R : Type u} {M₁ : Type v} {Mβ‚‚ : Type w} variable [CommRing R] [AddCommGroup M₁] [Module R M₁] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] variable (e : M₁ ≃ₗ[R] Mβ‚‚) /-- A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms. -/ def lieConj : Module.End R M₁ ≃ₗ⁅R⁆ Module.End R Mβ‚‚ := { e.conj with map_lie' := fun {f g} => show e.conj ⁅f, g⁆ = ⁅e.conj f, e.conj g⁆ by
simp only [LieRing.of_associative_ring_bracket, LinearMap.mul_eq_comp, e.conj_comp, LinearEquiv.map_sub]
/-- A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms. -/ def lieConj : Module.End R M₁ ≃ₗ⁅R⁆ Module.End R Mβ‚‚ := { e.conj with map_lie' := fun {f g} => show e.conj ⁅f, g⁆ = ⁅e.conj f, e.conj g⁆ by
Mathlib.Algebra.Lie.OfAssociative.342_0.ll51mLev4p7Z1wP
/-- A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms. -/ def lieConj : Module.End R M₁ ≃ₗ⁅R⁆ Module.End R Mβ‚‚
Mathlib_Algebra_Lie_OfAssociative
R : Type u A₁ : Type v Aβ‚‚ : Type w inst✝⁴ : CommRing R inst✝³ : Ring A₁ inst✝² : Ring Aβ‚‚ inst✝¹ : Algebra R A₁ inst✝ : Algebra R Aβ‚‚ e : A₁ ≃ₐ[R] Aβ‚‚ src✝ : A₁ ≃ₗ[R] Aβ‚‚ := toLinearEquiv e x y : A₁ ⊒ AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : βˆ€ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : βˆ€ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r β€’ x) = (RingHom.id R) r β€’ AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : βˆ€ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : βˆ€ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r β€’ x) = (RingHom.id R) r β€’ AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : βˆ€ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : βˆ€ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r β€’ x) = (RingHom.id R) r β€’ AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy have hyx := A'.mul_mem hy hx exact Submodule.sub_mem (Subalgebra.toSubmodule A') hxy hyx } #align lie_subalgebra_of_subalgebra lieSubalgebraOfSubalgebra namespace LinearEquiv variable {R : Type u} {M₁ : Type v} {Mβ‚‚ : Type w} variable [CommRing R] [AddCommGroup M₁] [Module R M₁] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] variable (e : M₁ ≃ₗ[R] Mβ‚‚) /-- A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms. -/ def lieConj : Module.End R M₁ ≃ₗ⁅R⁆ Module.End R Mβ‚‚ := { e.conj with map_lie' := fun {f g} => show e.conj ⁅f, g⁆ = ⁅e.conj f, e.conj g⁆ by simp only [LieRing.of_associative_ring_bracket, LinearMap.mul_eq_comp, e.conj_comp, LinearEquiv.map_sub] } #align linear_equiv.lie_conj LinearEquiv.lieConj @[simp] theorem lieConj_apply (f : Module.End R M₁) : e.lieConj f = e.conj f := rfl #align linear_equiv.lie_conj_apply LinearEquiv.lieConj_apply @[simp] theorem lieConj_symm : e.lieConj.symm = e.symm.lieConj := rfl #align linear_equiv.lie_conj_symm LinearEquiv.lieConj_symm end LinearEquiv namespace AlgEquiv variable {R : Type u} {A₁ : Type v} {Aβ‚‚ : Type w} variable [CommRing R] [Ring A₁] [Ring Aβ‚‚] [Algebra R A₁] [Algebra R Aβ‚‚] variable (e : A₁ ≃ₐ[R] Aβ‚‚) /-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/ def toLieEquiv : A₁ ≃ₗ⁅R⁆ Aβ‚‚ := { e.toLinearEquiv with toFun := e.toFun map_lie' := fun {x y} => by
have : e.toEquiv.toFun = e := rfl
/-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/ def toLieEquiv : A₁ ≃ₗ⁅R⁆ Aβ‚‚ := { e.toLinearEquiv with toFun := e.toFun map_lie' := fun {x y} => by
Mathlib.Algebra.Lie.OfAssociative.371_0.ll51mLev4p7Z1wP
/-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/ def toLieEquiv : A₁ ≃ₗ⁅R⁆ Aβ‚‚
Mathlib_Algebra_Lie_OfAssociative
R : Type u A₁ : Type v Aβ‚‚ : Type w inst✝⁴ : CommRing R inst✝³ : Ring A₁ inst✝² : Ring Aβ‚‚ inst✝¹ : Algebra R A₁ inst✝ : Algebra R Aβ‚‚ e : A₁ ≃ₐ[R] Aβ‚‚ src✝ : A₁ ≃ₗ[R] Aβ‚‚ := toLinearEquiv e x y : A₁ this : e.toFun = ⇑e ⊒ AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : βˆ€ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : βˆ€ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r β€’ x) = (RingHom.id R) r β€’ AddHom.toFun src✝.toAddHom x) }.toAddHom ⁅x, y⁆ = ⁅AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : βˆ€ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : βˆ€ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r β€’ x) = (RingHom.id R) r β€’ AddHom.toFun src✝.toAddHom x) }.toAddHom x, AddHom.toFun { toAddHom := { toFun := e.toFun, map_add' := (_ : βˆ€ (x y : A₁), AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }, map_smul' := (_ : βˆ€ (r : R) (x : A₁), AddHom.toFun src✝.toAddHom (r β€’ x) = (RingHom.id R) r β€’ AddHom.toFun src✝.toAddHom x) }.toAddHom y⁆
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.Algebra.Lie.Basic import Mathlib.Algebra.Lie.Subalgebra import Mathlib.Algebra.Lie.Submodule import Mathlib.Algebra.Algebra.Subalgebra.Basic #align_import algebra.lie.of_associative from "leanprover-community/mathlib"@"f0f3d964763ecd0090c9eb3ae0d15871d08781c4" /-! # Lie algebras of associative algebras This file defines the Lie algebra structure that arises on an associative algebra via the ring commutator. Since the linear endomorphisms of a Lie algebra form an associative algebra, one can define the adjoint action as a morphism of Lie algebras from a Lie algebra to its linear endomorphisms. We make such a definition in this file. ## Main definitions * `LieAlgebra.ofAssociativeAlgebra` * `LieAlgebra.ofAssociativeAlgebraHom` * `LieModule.toEndomorphism` * `LieAlgebra.ad` * `LinearEquiv.lieConj` * `AlgEquiv.toLieEquiv` ## Tags lie algebra, ring commutator, adjoint action -/ universe u v w w₁ wβ‚‚ section OfAssociative variable {A : Type v} [Ring A] namespace Ring /-- The bracket operation for rings is the ring commutator, which captures the extent to which a ring is commutative. It is identically zero exactly when the ring is commutative. -/ instance (priority := 100) instBracket : Bracket A A := ⟨fun x y => x * y - y * x⟩ theorem lie_def (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align ring.lie_def Ring.lie_def end Ring theorem commute_iff_lie_eq {x y : A} : Commute x y ↔ ⁅x, y⁆ = 0 := sub_eq_zero.symm #align commute_iff_lie_eq commute_iff_lie_eq theorem Commute.lie_eq {x y : A} (h : Commute x y) : ⁅x, y⁆ = 0 := sub_eq_zero_of_eq h #align commute.lie_eq Commute.lie_eq namespace LieRing /-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/ instance (priority := 100) ofAssociativeRing : LieRing A where add_lie _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_add _ _ _ := by simp only [Ring.lie_def, right_distrib, left_distrib]; abel lie_self := by simp only [Ring.lie_def, forall_const, sub_self] leibniz_lie _ _ _ := by simp only [Ring.lie_def, mul_sub_left_distrib, mul_sub_right_distrib, mul_assoc]; abel #align lie_ring.of_associative_ring LieRing.ofAssociativeRing theorem of_associative_ring_bracket (x y : A) : ⁅x, y⁆ = x * y - y * x := rfl #align lie_ring.of_associative_ring_bracket LieRing.of_associative_ring_bracket @[simp] theorem lie_apply {Ξ± : Type*} (f g : Ξ± β†’ A) (a : Ξ±) : ⁅f, g⁆ a = ⁅f a, g a⁆ := rfl #align lie_ring.lie_apply LieRing.lie_apply end LieRing section AssociativeModule variable {M : Type w} [AddCommGroup M] [Module A M] /-- We can regard a module over an associative ring `A` as a Lie ring module over `A` with Lie bracket equal to its ring commutator. Note that this cannot be a global instance because it would create a diamond when `M = A`, specifically we can build two mathematically-different `bracket A A`s: 1. `@Ring.bracket A _` which says `⁅a, b⁆ = a * b - b * a` 2. `(@LieRingModule.ofAssociativeModule A _ A _ _).toBracket` which says `⁅a, b⁆ = a β€’ b` (and thus `⁅a, b⁆ = a * b`) See note [reducible non-instances] -/ @[reducible] def LieRingModule.ofAssociativeModule : LieRingModule A M where bracket := (Β· β€’ Β·) add_lie := add_smul lie_add := smul_add leibniz_lie := by simp [LieRing.of_associative_ring_bracket, sub_smul, mul_smul, sub_add_cancel] #align lie_ring_module.of_associative_module LieRingModule.ofAssociativeModule attribute [local instance] LieRingModule.ofAssociativeModule theorem lie_eq_smul (a : A) (m : M) : ⁅a, m⁆ = a β€’ m := rfl #align lie_eq_smul lie_eq_smul end AssociativeModule section LieAlgebra variable {R : Type u} [CommRing R] [Algebra R A] /-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator. -/ instance (priority := 100) LieAlgebra.ofAssociativeAlgebra : LieAlgebra R A where lie_smul t x y := by rw [LieRing.of_associative_ring_bracket, LieRing.of_associative_ring_bracket, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_sub] #align lie_algebra.of_associative_algebra LieAlgebra.ofAssociativeAlgebra attribute [local instance] LieRingModule.ofAssociativeModule section AssociativeRepresentation variable {M : Type w} [AddCommGroup M] [Module R M] [Module A M] [IsScalarTower R A M] /-- A representation of an associative algebra `A` is also a representation of `A`, regarded as a Lie algebra via the ring commutator. See the comment at `LieRingModule.ofAssociativeModule` for why the possibility `M = A` means this cannot be a global instance. -/ theorem LieModule.ofAssociativeModule : LieModule R A M where smul_lie := smul_assoc lie_smul := smul_algebra_smul_comm #align lie_module.of_associative_module LieModule.ofAssociativeModule instance Module.End.lieRingModule : LieRingModule (Module.End R M) M := LieRingModule.ofAssociativeModule #align module.End.lie_ring_module Module.End.lieRingModule instance Module.End.lieModule : LieModule R (Module.End R M) M := LieModule.ofAssociativeModule #align module.End.lie_module Module.End.lieModule end AssociativeRepresentation namespace AlgHom variable {B : Type w} {C : Type w₁} [Ring B] [Ring C] [Algebra R B] [Algebra R C] variable (f : A →ₐ[R] B) (g : B →ₐ[R] C) /-- The map `ofAssociativeAlgebra` associating a Lie algebra to an associative algebra is functorial. -/ def toLieHom : A →ₗ⁅R⁆ B := { f.toLinearMap with map_lie' := fun {_ _} => by simp [LieRing.of_associative_ring_bracket] } #align alg_hom.to_lie_hom AlgHom.toLieHom instance : Coe (A →ₐ[R] B) (A →ₗ⁅R⁆ B) := ⟨toLieHom⟩ /- Porting note: is a syntactic tautology @[simp] theorem toLieHom_coe : f.toLieHom = ↑f := rfl -/ #noalign alg_hom.to_lie_hom_coe @[simp] theorem coe_toLieHom : ((f : A →ₗ⁅R⁆ B) : A β†’ B) = f := rfl #align alg_hom.coe_to_lie_hom AlgHom.coe_toLieHom theorem toLieHom_apply (x : A) : f.toLieHom x = f x := rfl #align alg_hom.to_lie_hom_apply AlgHom.toLieHom_apply @[simp] theorem toLieHom_id : (AlgHom.id R A : A →ₗ⁅R⁆ A) = LieHom.id := rfl #align alg_hom.to_lie_hom_id AlgHom.toLieHom_id @[simp] theorem toLieHom_comp : (g.comp f : A →ₗ⁅R⁆ C) = (g : B →ₗ⁅R⁆ C).comp (f : A →ₗ⁅R⁆ B) := rfl #align alg_hom.to_lie_hom_comp AlgHom.toLieHom_comp theorem toLieHom_injective {f g : A →ₐ[R] B} (h : (f : A →ₗ⁅R⁆ B) = (g : A →ₗ⁅R⁆ B)) : f = g := by ext a; exact LieHom.congr_fun h a #align alg_hom.to_lie_hom_injective AlgHom.toLieHom_injective end AlgHom end LieAlgebra end OfAssociative section AdjointAction variable (R : Type u) (L : Type v) (M : Type w) variable [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] variable [LieRingModule L M] [LieModule R L M] /-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. See also `LieModule.toModuleHom`. -/ @[simps] def LieModule.toEndomorphism : L →ₗ⁅R⁆ Module.End R M where toFun x := { toFun := fun m => ⁅x, m⁆ map_add' := lie_add x map_smul' := fun t => lie_smul t x } map_add' x y := by ext m; apply add_lie map_smul' t x := by ext m; apply smul_lie map_lie' {x y} := by ext m; apply lie_lie #align lie_module.to_endomorphism LieModule.toEndomorphism /-- The adjoint action of a Lie algebra on itself. -/ def LieAlgebra.ad : L →ₗ⁅R⁆ Module.End R L := LieModule.toEndomorphism R L L #align lie_algebra.ad LieAlgebra.ad @[simp] theorem LieAlgebra.ad_apply (x y : L) : LieAlgebra.ad R L x y = ⁅x, y⁆ := rfl #align lie_algebra.ad_apply LieAlgebra.ad_apply @[simp] theorem LieModule.toEndomorphism_module_end : LieModule.toEndomorphism R (Module.End R M) M = LieHom.id := by ext g m; simp [lie_eq_smul] #align lie_module.to_endomorphism_module_End LieModule.toEndomorphism_module_end theorem LieSubalgebra.toEndomorphism_eq (K : LieSubalgebra R L) {x : K} : LieModule.toEndomorphism R K M x = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_eq LieSubalgebra.toEndomorphism_eq @[simp] theorem LieSubalgebra.toEndomorphism_mk (K : LieSubalgebra R L) {x : L} (hx : x ∈ K) : LieModule.toEndomorphism R K M ⟨x, hx⟩ = LieModule.toEndomorphism R L M x := rfl #align lie_subalgebra.to_endomorphism_mk LieSubalgebra.toEndomorphism_mk variable {R L M} namespace LieModule variable {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] (f : M →ₗ⁅R,L⁆ Mβ‚‚) (k : β„•) (x : L) lemma toEndomorphism_pow_comp_lieHom : (toEndomorphism R L Mβ‚‚ x ^ k) βˆ˜β‚— f = f βˆ˜β‚— toEndomorphism R L M x ^ k := by apply LinearMap.commute_pow_left_of_commute ext simp lemma toEndomorphism_pow_apply_map (m : M) : (toEndomorphism R L Mβ‚‚ x ^ k) (f m) = f ((toEndomorphism R L M x ^ k) m) := LinearMap.congr_fun (toEndomorphism_pow_comp_lieHom f k x) m end LieModule namespace LieSubmodule open LieModule Set variable {N : LieSubmodule R L M} {x : L} theorem coe_map_toEndomorphism_le : (N : Submodule R M).map (LieModule.toEndomorphism R L M x) ≀ N := by rintro n ⟨m, hm, rfl⟩ exact N.lie_mem hm #align lie_submodule.coe_map_to_endomorphism_le LieSubmodule.coe_map_toEndomorphism_le variable (N x) theorem toEndomorphism_comp_subtype_mem (m : M) (hm : m ∈ (N : Submodule R M)) : (toEndomorphism R L M x).comp (N : Submodule R M).subtype ⟨m, hm⟩ ∈ (N : Submodule R M) := by simpa using N.lie_mem hm #align lie_submodule.to_endomorphism_comp_subtype_mem LieSubmodule.toEndomorphism_comp_subtype_mem @[simp] theorem toEndomorphism_restrict_eq_toEndomorphism (h := N.toEndomorphism_comp_subtype_mem x) : (toEndomorphism R L M x).restrict h = toEndomorphism R L N x := by ext; simp [LinearMap.restrict_apply] #align lie_submodule.to_endomorphism_restrict_eq_to_endomorphism LieSubmodule.toEndomorphism_restrict_eq_toEndomorphism lemma mapsTo_pow_toEndomorphism_sub_algebraMap {Ο† : R} {k : β„•} {x : L} : MapsTo ((toEndomorphism R L M x - algebraMap R (Module.End R M) Ο†) ^ k) N N := by rw [LinearMap.coe_pow] exact MapsTo.iterate (fun m hm ↦ N.sub_mem (N.lie_mem hm) (N.smul_mem _ hm)) k end LieSubmodule open LieAlgebra theorem LieAlgebra.ad_eq_lmul_left_sub_lmul_right (A : Type v) [Ring A] [Algebra R A] : (ad R A : A β†’ Module.End R A) = LinearMap.mulLeft R - LinearMap.mulRight R := by ext a b; simp [LieRing.of_associative_ring_bracket] #align lie_algebra.ad_eq_lmul_left_sub_lmul_right LieAlgebra.ad_eq_lmul_left_sub_lmul_right theorem LieSubalgebra.ad_comp_incl_eq (K : LieSubalgebra R L) (x : K) : (ad R L ↑x).comp (K.incl : K β†’β‚—[R] L) = (K.incl : K β†’β‚—[R] L).comp (ad R K x) := by ext y simp only [ad_apply, LieHom.coe_toLinearMap, LieSubalgebra.coe_incl, LinearMap.coe_comp, LieSubalgebra.coe_bracket, Function.comp_apply] #align lie_subalgebra.ad_comp_incl_eq LieSubalgebra.ad_comp_incl_eq end AdjointAction /-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/ def lieSubalgebraOfSubalgebra (R : Type u) [CommRing R] (A : Type v) [Ring A] [Algebra R A] (A' : Subalgebra R A) : LieSubalgebra R A := { Subalgebra.toSubmodule A' with lie_mem' := fun {x y} hx hy => by change ⁅x, y⁆ ∈ A'; change x ∈ A' at hx; change y ∈ A' at hy rw [LieRing.of_associative_ring_bracket] have hxy := A'.mul_mem hx hy have hyx := A'.mul_mem hy hx exact Submodule.sub_mem (Subalgebra.toSubmodule A') hxy hyx } #align lie_subalgebra_of_subalgebra lieSubalgebraOfSubalgebra namespace LinearEquiv variable {R : Type u} {M₁ : Type v} {Mβ‚‚ : Type w} variable [CommRing R] [AddCommGroup M₁] [Module R M₁] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] variable (e : M₁ ≃ₗ[R] Mβ‚‚) /-- A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms. -/ def lieConj : Module.End R M₁ ≃ₗ⁅R⁆ Module.End R Mβ‚‚ := { e.conj with map_lie' := fun {f g} => show e.conj ⁅f, g⁆ = ⁅e.conj f, e.conj g⁆ by simp only [LieRing.of_associative_ring_bracket, LinearMap.mul_eq_comp, e.conj_comp, LinearEquiv.map_sub] } #align linear_equiv.lie_conj LinearEquiv.lieConj @[simp] theorem lieConj_apply (f : Module.End R M₁) : e.lieConj f = e.conj f := rfl #align linear_equiv.lie_conj_apply LinearEquiv.lieConj_apply @[simp] theorem lieConj_symm : e.lieConj.symm = e.symm.lieConj := rfl #align linear_equiv.lie_conj_symm LinearEquiv.lieConj_symm end LinearEquiv namespace AlgEquiv variable {R : Type u} {A₁ : Type v} {Aβ‚‚ : Type w} variable [CommRing R] [Ring A₁] [Ring Aβ‚‚] [Algebra R A₁] [Algebra R Aβ‚‚] variable (e : A₁ ≃ₐ[R] Aβ‚‚) /-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/ def toLieEquiv : A₁ ≃ₗ⁅R⁆ Aβ‚‚ := { e.toLinearEquiv with toFun := e.toFun map_lie' := fun {x y} => by have : e.toEquiv.toFun = e := rfl
simp_rw [LieRing.of_associative_ring_bracket, this, map_sub, map_mul]
/-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/ def toLieEquiv : A₁ ≃ₗ⁅R⁆ Aβ‚‚ := { e.toLinearEquiv with toFun := e.toFun map_lie' := fun {x y} => by have : e.toEquiv.toFun = e := rfl
Mathlib.Algebra.Lie.OfAssociative.371_0.ll51mLev4p7Z1wP
/-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/ def toLieEquiv : A₁ ≃ₗ⁅R⁆ Aβ‚‚
Mathlib_Algebra_Lie_OfAssociative
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ T R (n + 2) = 2 * X * T R (n + 1) - T R n
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by
rw [T]
@[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by
Mathlib.RingTheory.Polynomial.Chebyshev.81_0.SRy1jgYRAFbFJky
@[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ T R 2 = 2 * X ^ 2 - 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by
simp only [T, sub_left_inj, sq, mul_assoc]
theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by
Mathlib.RingTheory.Polynomial.Chebyshev.85_0.SRy1jgYRAFbFJky
theorem T_two : T R 2 = 2 * X ^ 2 - 1
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : 2 ≀ n ⊒ T R n = 2 * X * T R (n - 1) - T R (n - 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by
obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.88_0.SRy1jgYRAFbFJky
theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2)
Mathlib_RingTheory_Polynomial_Chebyshev
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : 2 ≀ 2 + n ⊒ T R (2 + n) = 2 * X * T R (2 + n - 1) - T R (2 + n - 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
rw [add_comm]
theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
Mathlib.RingTheory.Polynomial.Chebyshev.88_0.SRy1jgYRAFbFJky
theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2)
Mathlib_RingTheory_Polynomial_Chebyshev
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : 2 ≀ 2 + n ⊒ T R (n + 2) = 2 * X * T R (n + 2 - 1) - T R (n + 2 - 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm]
exact T_add_two R n
theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm]
Mathlib.RingTheory.Polynomial.Chebyshev.88_0.SRy1jgYRAFbFJky
theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ U R (n + 2) = 2 * X * U R (n + 1) - U R n
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by
rw [U]
@[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by
Mathlib.RingTheory.Polynomial.Chebyshev.109_0.SRy1jgYRAFbFJky
@[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ U R 2 = 4 * X ^ 2 - 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by
simp only [U]
theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by
Mathlib.RingTheory.Polynomial.Chebyshev.113_0.SRy1jgYRAFbFJky
theorem U_two : U R 2 = 4 * X ^ 2 - 1
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ 2 * X * (2 * X) - 1 = 4 * X ^ 2 - 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U]
ring
theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U]
Mathlib.RingTheory.Polynomial.Chebyshev.113_0.SRy1jgYRAFbFJky
theorem U_two : U R 2 = 4 * X ^ 2 - 1
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : 2 ≀ n ⊒ U R n = 2 * X * U R (n - 1) - U R (n - 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by
obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.118_0.SRy1jgYRAFbFJky
theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2)
Mathlib_RingTheory_Polynomial_Chebyshev
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : 2 ≀ 2 + n ⊒ U R (2 + n) = 2 * X * U R (2 + n - 1) - U R (2 + n - 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
rw [add_comm]
theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h
Mathlib.RingTheory.Polynomial.Chebyshev.118_0.SRy1jgYRAFbFJky
theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2)
Mathlib_RingTheory_Polynomial_Chebyshev
case intro R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : 2 ≀ 2 + n ⊒ U R (n + 2) = 2 * X * U R (n + 2 - 1) - U R (n + 2 - 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm]
exact U_add_two R n
theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm]
Mathlib.RingTheory.Polynomial.Chebyshev.118_0.SRy1jgYRAFbFJky
theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ U R (0 + 1) = X * U R 0 + T R (0 + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by
simp only [T, U, two_mul, mul_one]
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.124_0.SRy1jgYRAFbFJky
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ U R (1 + 1) = X * U R 1 + T R (1 + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by
simp only [T, U]
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.124_0.SRy1jgYRAFbFJky
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ 2 * X * (2 * X) - 1 = X * (2 * X) + (2 * X * X - 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U];
ring
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U];
Mathlib.RingTheory.Polynomial.Chebyshev.124_0.SRy1jgYRAFbFJky
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by
rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n]
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by
Mathlib.RingTheory.Polynomial.Chebyshev.124_0.SRy1jgYRAFbFJky
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by
ring
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by
Mathlib.RingTheory.Polynomial.Chebyshev.124_0.SRy1jgYRAFbFJky
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) = X * U R (n + 2) + T R (n + 2 + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by
simp only [U_add_two, T_add_two]
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by
Mathlib.RingTheory.Polynomial.Chebyshev.124_0.SRy1jgYRAFbFJky
theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ T R (n + 1) = U R (n + 1) - X * U R n
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by
rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel]
theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by
Mathlib.RingTheory.Polynomial.Chebyshev.135_0.SRy1jgYRAFbFJky
theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ T R (0 + 2) = X * T R (0 + 1) - (1 - X ^ 2) * U R 0
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by
simp only [T, U]
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ 2 * X * X - 1 = X * X - (1 - X ^ 2) * 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U];
ring
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U];
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ T R (1 + 2) = X * T R (1 + 1) - (1 - X ^ 2) * U R 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by
simp only [T, U]
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ 2 * X * (2 * X * X - 1) - X = X * (2 * X * X - 1) - (1 - X ^ 2) * (2 * X)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U];
ring
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U];
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ 2 * X * T R (n + 2 + 1) - T R (n + 2) = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by
simp only [T_eq_X_mul_T_sub_pol_U]
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by
ring
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by
rw [T_add_two _ (n + 1), U_add_two]
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.139_0.SRy1jgYRAFbFJky
theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by
rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add]
theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.153_0.SRy1jgYRAFbFJky
theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S ⊒ map f (T R 0) = T S 0
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by
simp only [T_zero, Polynomial.map_one]
@[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.160_0.SRy1jgYRAFbFJky
@[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n]
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S ⊒ map f (T R 1) = T S 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by
simp only [T_one, map_X]
@[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.160_0.SRy1jgYRAFbFJky
@[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n]
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S n : β„• ⊒ map f (T R (n + 2)) = T S (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by
simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n]
@[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by
Mathlib.RingTheory.Polynomial.Chebyshev.160_0.SRy1jgYRAFbFJky
@[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n]
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S ⊒ map f (U R 0) = U S 0
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by
simp only [U_zero, Polynomial.map_one]
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.169_0.SRy1jgYRAFbFJky
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S ⊒ map f (U R 1) = U S 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by
simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one]
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.169_0.SRy1jgYRAFbFJky
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S n : β„• ⊒ map f (U R (n + 2)) = U S (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by
simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n]
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by
Mathlib.RingTheory.Polynomial.Chebyshev.169_0.SRy1jgYRAFbFJky
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S f : R β†’+* S n : β„• ⊒ map f 2 * X * U S (n + 1) - U S n = 2 * X * U S (n + 1) - U S n
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n]
norm_num
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n]
Mathlib.RingTheory.Polynomial.Chebyshev.169_0.SRy1jgYRAFbFJky
@[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ derivative (T R (0 + 1)) = (↑0 + 1) * U R 0
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by
simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one]
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ derivative (T R (1 + 1)) = (↑1 + 1) * U R 1
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by
simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul]
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by
rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat]
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (0 * X + 2 * 1) * T R (n + 1 + 1) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat]
ring_nf
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat]
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * ((↑n + 1 + 1) * U R (n + 1)) - (↑n + 1) * U R n
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by
rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)]
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * ((↑n + 1 + 1) * U R (n + 1)) - (↑n + 1) * U R n = (↑n + 1) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by
ring
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (↑n + 1) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) = (↑n + 1) * U R (n + 2) + 2 * U R (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by
rw [U_add_two]
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (↑n + 1) * U R (n + 2) + 2 * U R (n + 2) = (↑n + 2 + 1) * U R (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by
ring
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (↑n + 2 + 1) * U R (n + 2) = (↑(n + 2) + 1) * U R (n + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by
norm_cast
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.180_0.SRy1jgYRAFbFJky
theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((↑n + 1) * U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by
rw [T_derivative_eq_U]
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.200_0.SRy1jgYRAFbFJky
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (1 - X ^ 2) * ((↑n + 1) * U R n) = (↑n + 1) * ((1 - X ^ 2) * U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by
ring
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.200_0.SRy1jgYRAFbFJky
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (↑n + 1) * ((1 - X ^ 2) * U R n) = (↑n + 1) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by
rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two]
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by
Mathlib.RingTheory.Polynomial.Chebyshev.200_0.SRy1jgYRAFbFJky
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (↑n + 1) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) = (↑n + 1) * (T R n - X * T R (n + 1))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by
ring
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by
Mathlib.RingTheory.Polynomial.Chebyshev.200_0.SRy1jgYRAFbFJky
theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1))
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ (↑n + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by
have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by
conv_lhs => rw [T_eq_X_mul_T_sub_pol_U]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• | derivative (T R (n + 2))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs =>
rw [T_eq_X_mul_T_sub_pol_U]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs =>
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• | derivative (T R (n + 2))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs =>
rw [T_eq_X_mul_T_sub_pol_U]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs =>
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• | derivative (T R (n + 2))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs =>
rw [T_eq_X_mul_T_sub_pol_U]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs =>
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ derivative (X * T R (n + 1) - (1 - X ^ 2) * U R n) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U]
simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U]
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ T R (n + 1) + X * ((↑n + 1) * U R n) - ((0 - C ↑2 * X ^ (2 - 1)) * U R n + (1 - X ^ 2) * derivative (U R n)) = U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U]
rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U]
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• ⊒ U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) - ((0 - ↑2 * X ^ (2 - 1)) * U R n + (1 - X ^ 2) * derivative (U R n)) = U R (n + 1) - X * U R n + X * ((↑n + 1) * U R n) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast]
ring
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast]
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) ⊒ (↑n + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring
calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) ⊒ (↑n + 1) * T R (n + 1) = (↑n + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((↑n + 1) * U R n) - (X * U R n + T R (n + 1))
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by
ring
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) ⊒ (↑n + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((↑n + 1) * U R n) - (X * U R n + T R (n + 1)) = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by
rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) ⊒ derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by
rw [h]
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S n : β„• h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) ⊒ U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by
ring
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.211_0.SRy1jgYRAFbFJky
theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ βˆ€ (k : β„•), 2 * T R 0 * T R (0 + k) = T R (2 * 0 + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by
simp [two_mul, add_mul]
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ βˆ€ (k : β„•), 2 * T R 1 * T R (1 + k) = T R (2 * 1 + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by
simp [add_comm]
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m : β„• ⊒ βˆ€ (k : β„•), 2 * T R (m + 2) * T R (m + 2 + k) = T R (2 * (m + 2) + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by
intro k
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• ⊒ 2 * T R (m + 2) * T R (m + 2 + k) = T R (2 * (m + 2) + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal
suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• this : 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k ⊒ 2 * T R (m + 2) * T R (m + 2 + k) = T R (2 * (m + 2) + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by
have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• this : 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k ⊒ 2 * (m + 2) + k = 2 * m + k + 4
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by
ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• this : 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 ⊒ 2 * T R (m + 2) * T R (m + 2 + k) = T R (2 * (m + 2) + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring
have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• this : 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 ⊒ m + 2 + k = m + k + 2
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by
ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• this : 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 h_natβ‚‚ : m + 2 + k = m + k + 2 ⊒ 2 * T R (m + 2) * T R (m + 2 + k) = T R (2 * (m + 2) + k) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring
simpa [h_nat₁, h_natβ‚‚] using this
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• ⊒ 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1`
have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1)
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1`
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• ⊒ 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by
have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• ⊒ m + 1 + (k + 1) = m + k + 2
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by
ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• h_nat₁ : m + 1 + (k + 1) = m + k + 2 ⊒ 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring
have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• h_nat₁ : m + 1 + (k + 1) = m + k + 2 ⊒ 2 * (m + 1) + (k + 1) = 2 * m + k + 3
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by
ring
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• h_nat₁ : m + 1 + (k + 1) = m + k + 2 h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 ⊒ 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring
simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1)
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) ⊒ 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2`
have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2)
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2`
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) ⊒ 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by
have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc]
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) ⊒ 2 * m + (k + 2) = 2 * m + k + 2
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by
simp [add_assoc]
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 ⊒ 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc]
have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc]
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc]
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 ⊒ m + (k + 2) = m + k + 2
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by
simp [add_assoc]
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 h_natβ‚‚ : m + (k + 2) = m + k + 2 ⊒ 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc]
simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2)
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc]
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) ⊒ 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices
have h₁ := T_add_two R m
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) h₁ : T R (m + 2) = 2 * X * T R (m + 1) - T R m ⊒ 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m
have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2)
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) h₁ : T R (m + 2) = 2 * X * T R (m + 1) - T R m hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) ⊒ 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2)
have h₃ := T_add_two R k
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2)
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m k : β„• H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) h₁ : T R (m + 2) = 2 * X * T R (m + 1) - T R m hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) h₃ : T R (k + 2) = 2 * X * T R (k + 1) - T R k ⊒ 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃
linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃
Mathlib.RingTheory.Polynomial.Chebyshev.238_0.SRy1jgYRAFbFJky
/-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ βˆ€ (n : β„•), T R (0 * n) = comp (T R 0) (T R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃ linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃ #align polynomial.chebyshev.mul_T Polynomial.Chebyshev.mul_T /-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by
simp
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by
Mathlib.RingTheory.Polynomial.Chebyshev.268_0.SRy1jgYRAFbFJky
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S ⊒ βˆ€ (n : β„•), T R (1 * n) = comp (T R 1) (T R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃ linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃ #align polynomial.chebyshev.mul_T Polynomial.Chebyshev.mul_T /-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by
simp
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by
Mathlib.RingTheory.Polynomial.Chebyshev.268_0.SRy1jgYRAFbFJky
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m : β„• ⊒ βˆ€ (n : β„•), T R ((m + 2) * n) = comp (T R (m + 2)) (T R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃ linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃ #align polynomial.chebyshev.mul_T Polynomial.Chebyshev.mul_T /-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by
intro n
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by
Mathlib.RingTheory.Polynomial.Chebyshev.268_0.SRy1jgYRAFbFJky
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m n : β„• ⊒ T R ((m + 2) * n) = comp (T R (m + 2)) (T R n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃ linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃ #align polynomial.chebyshev.mul_T Polynomial.Chebyshev.mul_T /-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n
have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n) := by convert mul_T R n (m * n) using 1 <;> ring_nf
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n
Mathlib.RingTheory.Polynomial.Chebyshev.268_0.SRy1jgYRAFbFJky
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
Mathlib_RingTheory_Polynomial_Chebyshev
R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m n : β„• ⊒ 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃ linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃ #align polynomial.chebyshev.mul_T Polynomial.Chebyshev.mul_T /-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n) := by
convert mul_T R n (m * n) using 1
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n) := by
Mathlib.RingTheory.Polynomial.Chebyshev.268_0.SRy1jgYRAFbFJky
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
Mathlib_RingTheory_Polynomial_Chebyshev
case h.e'_2 R : Type u_1 S : Type u_2 inst✝¹ : CommRing R inst✝ : CommRing S m n : β„• ⊒ 2 * T R n * T R ((m + 1) * n) = 2 * T R n * T R (n + m * n)
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Julian Kuelshammer, Heather Macbeth -/ import Mathlib.Data.Polynomial.Derivative import Mathlib.Tactic.LinearCombination #align_import ring_theory.polynomial.chebyshev from "leanprover-community/mathlib"@"d774451114d6045faeb6751c396bea1eb9058946" /-! # Chebyshev polynomials The Chebyshev polynomials are two families of polynomials indexed by `β„•`, with integral coefficients. ## Main definitions * `Polynomial.Chebyshev.T`: the Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.U`: the Chebyshev polynomials of the second kind. ## Main statements * The formal derivative of the Chebyshev polynomials of the first kind is a scalar multiple of the Chebyshev polynomials of the second kind. * `Polynomial.Chebyshev.mul_T`, the product of the `m`-th and `(m + k)`-th Chebyshev polynomials of the first kind is the sum of the `(2 * m + k)`-th and `k`-th Chebyshev polynomials of the first kind. * `Polynomial.Chebyshev.T_mul`, the `(m * n)`-th Chebyshev polynomial of the first kind is the composition of the `m`-th and `n`-th Chebyshev polynomials of the first kind. ## Implementation details Since Chebyshev polynomials have interesting behaviour over the complex numbers and modulo `p`, we define them to have coefficients in an arbitrary commutative ring, even though technically `β„€` would suffice. The benefit of allowing arbitrary coefficient rings, is that the statements afterwards are clean, and do not have `map (Int.castRingHom R)` interfering all the time. ## References [Lionel Ponton, _Roots of the Chebyshev polynomials: A purely algebraic approach_] [ponton2020chebyshev] ## TODO * Redefine and/or relate the definition of Chebyshev polynomials to `LinearRecurrence`. * Add explicit formula involving square roots for Chebyshev polynomials * Compute zeroes and extrema of Chebyshev polynomials. * Prove that the roots of the Chebyshev polynomials (except 0) are irrational. * Prove minimax properties of Chebyshev polynomials. -/ noncomputable section namespace Polynomial.Chebyshev set_option linter.uppercaseLean3 false -- `T` `U` `X` open Polynomial open Polynomial variable (R S : Type*) [CommRing R] [CommRing S] /-- `T n` is the `n`-th Chebyshev polynomial of the first kind -/ noncomputable def T : β„• β†’ R[X] | 0 => 1 | 1 => X | n + 2 => 2 * X * T (n + 1) - T n #align polynomial.chebyshev.T Polynomial.Chebyshev.T @[simp] theorem T_zero : T R 0 = 1 := rfl #align polynomial.chebyshev.T_zero Polynomial.Chebyshev.T_zero @[simp] theorem T_one : T R 1 = X := rfl #align polynomial.chebyshev.T_one Polynomial.Chebyshev.T_one @[simp] theorem T_add_two (n : β„•) : T R (n + 2) = 2 * X * T R (n + 1) - T R n := by rw [T] #align polynomial.chebyshev.T_add_two Polynomial.Chebyshev.T_add_two theorem T_two : T R 2 = 2 * X ^ 2 - 1 := by simp only [T, sub_left_inj, sq, mul_assoc] #align polynomial.chebyshev.T_two Polynomial.Chebyshev.T_two theorem T_of_two_le (n : β„•) (h : 2 ≀ n) : T R n = 2 * X * T R (n - 1) - T R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact T_add_two R n #align polynomial.chebyshev.T_of_two_le Polynomial.Chebyshev.T_of_two_le /-- `U n` is the `n`-th Chebyshev polynomial of the second kind -/ noncomputable def U : β„• β†’ R[X] | 0 => 1 | 1 => 2 * X | n + 2 => 2 * X * U (n + 1) - U n #align polynomial.chebyshev.U Polynomial.Chebyshev.U @[simp] theorem U_zero : U R 0 = 1 := rfl #align polynomial.chebyshev.U_zero Polynomial.Chebyshev.U_zero @[simp] theorem U_one : U R 1 = 2 * X := rfl #align polynomial.chebyshev.U_one Polynomial.Chebyshev.U_one @[simp] theorem U_add_two (n : β„•) : U R (n + 2) = 2 * X * U R (n + 1) - U R n := by rw [U] #align polynomial.chebyshev.U_add_two Polynomial.Chebyshev.U_add_two theorem U_two : U R 2 = 4 * X ^ 2 - 1 := by simp only [U] ring #align polynomial.chebyshev.U_two Polynomial.Chebyshev.U_two theorem U_of_two_le (n : β„•) (h : 2 ≀ n) : U R n = 2 * X * U R (n - 1) - U R (n - 2) := by obtain ⟨n, rfl⟩ := Nat.exists_eq_add_of_le h rw [add_comm] exact U_add_two R n #align polynomial.chebyshev.U_of_two_le Polynomial.Chebyshev.U_of_two_le theorem U_eq_X_mul_U_add_T : βˆ€ n : β„•, U R (n + 1) = X * U R n + T R (n + 1) | 0 => by simp only [T, U, two_mul, mul_one] | 1 => by simp only [T, U]; ring | n + 2 => calc U R (n + 2 + 1) = 2 * X * (X * U R (n + 1) + T R (n + 2)) - (X * U R n + T R (n + 1)) := by rw [U_add_two, U_eq_X_mul_U_add_T n, U_eq_X_mul_U_add_T (n + 1), U_eq_X_mul_U_add_T n] _ = X * (2 * X * U R (n + 1) - U R n) + (2 * X * T R (n + 2) - T R (n + 1)) := by ring _ = X * U R (n + 2) + T R (n + 2 + 1) := by simp only [U_add_two, T_add_two] #align polynomial.chebyshev.U_eq_X_mul_U_add_T Polynomial.Chebyshev.U_eq_X_mul_U_add_T theorem T_eq_U_sub_X_mul_U (n : β„•) : T R (n + 1) = U R (n + 1) - X * U R n := by rw [U_eq_X_mul_U_add_T, add_comm (X * U R n), add_sub_cancel] #align polynomial.chebyshev.T_eq_U_sub_X_mul_U Polynomial.Chebyshev.T_eq_U_sub_X_mul_U theorem T_eq_X_mul_T_sub_pol_U : βˆ€ n : β„•, T R (n + 2) = X * T R (n + 1) - (1 - X ^ 2) * U R n | 0 => by simp only [T, U]; ring | 1 => by simp only [T, U]; ring | n + 2 => calc T R (n + 2 + 2) = 2 * X * T R (n + 2 + 1) - T R (n + 2) := T_add_two _ _ _ = 2 * X * (X * T R (n + 2) - (1 - X ^ 2) * U R (n + 1)) - (X * T R (n + 1) - (1 - X ^ 2) * U R n) := by simp only [T_eq_X_mul_T_sub_pol_U] _ = X * (2 * X * T R (n + 2) - T R (n + 1)) - (1 - X ^ 2) * (2 * X * U R (n + 1) - U R n) := by ring _ = X * T R (n + 2 + 1) - (1 - X ^ 2) * U R (n + 2) := by rw [T_add_two _ (n + 1), U_add_two] #align polynomial.chebyshev.T_eq_X_mul_T_sub_pol_U Polynomial.Chebyshev.T_eq_X_mul_T_sub_pol_U theorem one_sub_X_sq_mul_U_eq_pol_in_T (n : β„•) : (1 - X ^ 2) * U R n = X * T R (n + 1) - T R (n + 2) := by rw [T_eq_X_mul_T_sub_pol_U, ← sub_add, sub_self, zero_add] #align polynomial.chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_U_eq_pol_in_T variable {R S} @[simp] theorem map_T (f : R β†’+* S) : βˆ€ n : β„•, map f (T R n) = T S n | 0 => by simp only [T_zero, Polynomial.map_one] | 1 => by simp only [T_one, map_X] | n + 2 => by simp only [T_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, Polynomial.map_ofNat, map_T f (n + 1), map_T f n] #align polynomial.chebyshev.map_T Polynomial.Chebyshev.map_T @[simp] theorem map_U (f : R β†’+* S) : βˆ€ n : β„•, map f (U R n) = U S n | 0 => by simp only [U_zero, Polynomial.map_one] | 1 => by simp [U_one, map_X, Polynomial.map_mul, Polynomial.map_add, Polynomial.map_one] | n + 2 => by simp only [U_add_two, Polynomial.map_mul, Polynomial.map_sub, map_X, Polynomial.map_add, Polynomial.map_one, map_U f (n + 1), map_U f n] norm_num #align polynomial.chebyshev.map_U Polynomial.Chebyshev.map_U theorem T_derivative_eq_U : βˆ€ n : β„•, derivative (T R (n + 1)) = (n + 1) * U R n | 0 => by simp only [T_one, U_zero, derivative_X, Nat.cast_zero, zero_add, mul_one] | 1 => by simp [T_two, U_one, derivative_sub, derivative_one, derivative_mul, derivative_X_pow, add_mul] | n + 2 => calc derivative (T R (n + 2 + 1)) = 2 * T R (n + 2) + 2 * X * derivative (T R (n + 1 + 1)) - derivative (T R (n + 1)) := by rw [T_add_two _ (n + 1), derivative_sub, derivative_mul, derivative_mul, derivative_X, derivative_ofNat] ring_nf _ = 2 * (U R (n + 1 + 1) - X * U R (n + 1)) + 2 * X * (((n + 1 + 1) : R[X]) * U R (n + 1)) - ((n + 1) : R[X]) * U R n := by rw_mod_cast [T_derivative_eq_U (n + 1), T_derivative_eq_U n, T_eq_U_sub_X_mul_U _ (n + 1)] _ = (n + 1 : R[X]) * (2 * X * U R (n + 1) - U R n) + 2 * U R (n + 2) := by ring _ = (n + 1) * U R (n + 2) + 2 * U R (n + 2) := by rw [U_add_two] _ = (n + 2 + 1) * U R (n + 2) := by ring _ = (↑(n + 2) + 1) * U R (n + 2) := by norm_cast #align polynomial.chebyshev.T_derivative_eq_U Polynomial.Chebyshev.T_derivative_eq_U theorem one_sub_X_sq_mul_derivative_T_eq_poly_in_T (n : β„•) : (1 - X ^ 2) * derivative (T R (n + 1)) = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := calc (1 - X ^ 2) * derivative (T R (n + 1)) = (1 - X ^ 2) * ((n + 1 : R[X]) * U R n) := by rw [T_derivative_eq_U] _ = (n + 1 : R[X]) * ((1 - X ^ 2) * U R n) := by ring _ = (n + 1 : R[X]) * (X * T R (n + 1) - (2 * X * T R (n + 1) - T R n)) := by rw [one_sub_X_sq_mul_U_eq_pol_in_T, T_add_two] _ = (n + 1 : R[X]) * (T R n - X * T R (n + 1)) := by ring #align polynomial.chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T Polynomial.Chebyshev.one_sub_X_sq_mul_derivative_T_eq_poly_in_T theorem add_one_mul_T_eq_poly_in_U (n : β„•) : ((n : R[X]) + 1) * T R (n + 1) = X * U R n - (1 - X ^ 2) * derivative (U R n) := by have h : derivative (T R (n + 2)) = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) := by conv_lhs => rw [T_eq_X_mul_T_sub_pol_U] simp only [derivative_sub, derivative_mul, derivative_X, derivative_one, derivative_X_pow, one_mul, T_derivative_eq_U] rw [T_eq_U_sub_X_mul_U, C_eq_nat_cast] ring calc ((n : R[X]) + 1) * T R (n + 1) = ((n : R[X]) + 1 + 1) * (X * U R n + T R (n + 1)) - X * ((n + 1 : R[X]) * U R n) - (X * U R n + T R (n + 1)) := by ring _ = derivative (T R (n + 2)) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [← U_eq_X_mul_U_add_T, ← T_derivative_eq_U, ← Nat.cast_one, ← Nat.cast_add, Nat.cast_one, ← T_derivative_eq_U (n + 1)] _ = U R (n + 1) - X * U R n + X * derivative (T R (n + 1)) + 2 * X * U R n - (1 - X ^ 2) * derivative (U R n) - X * derivative (T R (n + 1)) - U R (n + 1) := by rw [h] _ = X * U R n - (1 - X ^ 2) * derivative (U R n) := by ring #align polynomial.chebyshev.add_one_mul_T_eq_poly_in_U Polynomial.Chebyshev.add_one_mul_T_eq_poly_in_U variable (R) /-- The product of two Chebyshev polynomials is the sum of two other Chebyshev polynomials. -/ theorem mul_T : βˆ€ m k, 2 * T R m * T R (m + k) = T R (2 * m + k) + T R k | 0 => by simp [two_mul, add_mul] | 1 => by simp [add_comm] | m + 2 => by intro k -- clean up the `T` nat indices in the goal suffices 2 * T R (m + 2) * T R (m + k + 2) = T R (2 * m + k + 4) + T R k by have h_nat₁ : 2 * (m + 2) + k = 2 * m + k + 4 := by ring have h_natβ‚‚ : m + 2 + k = m + k + 2 := by ring simpa [h_nat₁, h_natβ‚‚] using this -- clean up the `T` nat indices in the inductive hypothesis applied to `m + 1` and `k + 1` have H₁ : 2 * T R (m + 1) * T R (m + k + 2) = T R (2 * m + k + 3) + T R (k + 1) := by have h_nat₁ : m + 1 + (k + 1) = m + k + 2 := by ring have h_natβ‚‚ : 2 * (m + 1) + (k + 1) = 2 * m + k + 3 := by ring simpa [h_nat₁, h_natβ‚‚] using mul_T (m + 1) (k + 1) -- clean up the `T` nat indices in the inductive hypothesis applied to `m` and `k + 2` have Hβ‚‚ : 2 * T R m * T R (m + k + 2) = T R (2 * m + k + 2) + T R (k + 2) := by have h_nat₁ : 2 * m + (k + 2) = 2 * m + k + 2 := by simp [add_assoc] have h_natβ‚‚ : m + (k + 2) = m + k + 2 := by simp [add_assoc] simpa [h_nat₁, h_natβ‚‚] using mul_T m (k + 2) -- state the `T` recurrence relation for a few useful indices have h₁ := T_add_two R m have hβ‚‚ : T R (2 * m + k + 4) = 2 * X * T R (2 * m + k + 3) - T R (2 * m + k + 2) := T_add_two R (2 * m + k + 2) have h₃ := T_add_two R k -- the desired identity is an appropriate linear combination of H₁, Hβ‚‚, h₁, hβ‚‚, h₃ linear_combination 2 * T R (m + k + 2) * h₁ + 2 * (X : R[X]) * H₁ - Hβ‚‚ - hβ‚‚ - h₃ #align polynomial.chebyshev.mul_T Polynomial.Chebyshev.mul_T /-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n) := by convert mul_T R n (m * n) using 1 <;>
ring_nf
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n) := by convert mul_T R n (m * n) using 1 <;>
Mathlib.RingTheory.Polynomial.Chebyshev.268_0.SRy1jgYRAFbFJky
/-- The `(m * n)`-th Chebyshev polynomial is the composition of the `m`-th and `n`-th -/ theorem T_mul : βˆ€ m n, T R (m * n) = (T R m).comp (T R n) | 0 => by simp | 1 => by simp | m + 2 => by intro n have : 2 * T R n * T R ((m + 1) * n) = T R ((m + 2) * n) + T R (m * n)
Mathlib_RingTheory_Polynomial_Chebyshev