state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c c₁ c₂ p₁ p₂ p x✝ : P ⊢ x✝ ∈ ↑⊤ → x✝ ∈ ↑(perpBisector p p)
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by
simp [mem_perpBisector_iff_inner_eq_inner]
@[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by
Mathlib.Geometry.Euclidean.PerpBisector.110_0.WKtplj3xHYGfYbJ
@[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c c₁ c₂ p₁ p₂ : P ⊢ perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by
refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩
@[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by
Mathlib.Geometry.Euclidean.PerpBisector.113_0.WKtplj3xHYGfYbJ
@[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c c₁ c₂ p₁ p₂ : P h : perpBisector p₁ p₂ = ⊤ ⊢ p₁ = p₂
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩
rw [← left_mem_perpBisector, h]
@[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩
Mathlib.Geometry.Euclidean.PerpBisector.113_0.WKtplj3xHYGfYbJ
@[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c c₁ c₂ p₁ p₂ : P h : perpBisector p₁ p₂ = ⊤ ⊢ p₁ ∈ ⊤
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h]
trivial
@[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h]
Mathlib.Geometry.Euclidean.PerpBisector.113_0.WKtplj3xHYGfYbJ
@[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c c₁ c₂ p₁ p₂ : P ⊢ perpBisector p₁ p₂ ≠ ⊥
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by
rw [← nonempty_iff_ne_bot]
@[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by
Mathlib.Geometry.Euclidean.PerpBisector.118_0.WKtplj3xHYGfYbJ
@[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c c₁ c₂ p₁ p₂ : P ⊢ Set.Nonempty ↑(perpBisector p₁ p₂)
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot];
exact perpBisector_nonempty
@[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot];
Mathlib.Geometry.Euclidean.PerpBisector.118_0.WKtplj3xHYGfYbJ
@[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c₁ c₂ p₁ p₂ : P hc₁ : dist p₁ c₁ = dist p₂ c₁ hc₂ : dist p₁ c₂ = dist p₂ c₂ ⊢ inner (c₂ -ᵥ c₁) (p₂ -ᵥ p₁) = 0
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot]; exact perpBisector_nonempty end AffineSubspace open AffineSubspace namespace EuclideanGeometry /-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by
rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector]
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by
Mathlib.Geometry.Euclidean.PerpBisector.127_0.WKtplj3xHYGfYbJ
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c₁ c₂ p₁ p₂ : P hc₁ : dist p₁ c₁ = dist p₂ c₁ hc₂ : dist p₁ c₂ = dist p₂ c₂ ⊢ c₂ -ᵥ c₁ ∈ direction (perpBisector p₁ p₂)
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot]; exact perpBisector_nonempty end AffineSubspace open AffineSubspace namespace EuclideanGeometry /-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector]
apply vsub_mem_direction
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector]
Mathlib.Geometry.Euclidean.PerpBisector.127_0.WKtplj3xHYGfYbJ
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0
Mathlib_Geometry_Euclidean_PerpBisector
case hp1 V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c₁ c₂ p₁ p₂ : P hc₁ : dist p₁ c₁ = dist p₂ c₁ hc₂ : dist p₁ c₂ = dist p₂ c₂ ⊢ c₂ ∈ perpBisector p₁ p₂
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot]; exact perpBisector_nonempty end AffineSubspace open AffineSubspace namespace EuclideanGeometry /-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector] apply vsub_mem_direction <;>
rwa [mem_perpBisector_iff_dist_eq']
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector] apply vsub_mem_direction <;>
Mathlib.Geometry.Euclidean.PerpBisector.127_0.WKtplj3xHYGfYbJ
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0
Mathlib_Geometry_Euclidean_PerpBisector
case hp2 V : Type u_2 P : Type u_1 inst✝³ : NormedAddCommGroup V inst✝² : InnerProductSpace ℝ V inst✝¹ : MetricSpace P inst✝ : NormedAddTorsor V P c₁ c₂ p₁ p₂ : P hc₁ : dist p₁ c₁ = dist p₂ c₁ hc₂ : dist p₁ c₂ = dist p₂ c₂ ⊢ c₁ ∈ perpBisector p₁ p₂
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot]; exact perpBisector_nonempty end AffineSubspace open AffineSubspace namespace EuclideanGeometry /-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector] apply vsub_mem_direction <;>
rwa [mem_perpBisector_iff_dist_eq']
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector] apply vsub_mem_direction <;>
Mathlib.Geometry.Euclidean.PerpBisector.127_0.WKtplj3xHYGfYbJ
/-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0
Mathlib_Geometry_Euclidean_PerpBisector
V : Type u_4 P : Type u_1 V' : Type u_3 P' : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P inst✝³ : NormedAddCommGroup V' inst✝² : InnerProductSpace ℝ V' inst✝¹ : MetricSpace P' inst✝ : NormedAddTorsor V' P' f : P → P' h : Isometry f p₁ p₂ : P ⊢ f ⁻¹' ↑(perpBisector (f p₁) (f p₂)) = ↑(perpBisector p₁ p₂)
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot]; exact perpBisector_nonempty end AffineSubspace open AffineSubspace namespace EuclideanGeometry /-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector] apply vsub_mem_direction <;> rwa [mem_perpBisector_iff_dist_eq'] #align euclidean_geometry.inner_vsub_vsub_of_dist_eq_of_dist_eq EuclideanGeometry.inner_vsub_vsub_of_dist_eq_of_dist_eq end EuclideanGeometry variable [NormedAddCommGroup V'] [InnerProductSpace ℝ V'] [MetricSpace P'] variable [NormedAddTorsor V' P'] theorem Isometry.preimage_perpBisector {f : P → P'} (h : Isometry f) (p₁ p₂ : P) : f ⁻¹' (perpBisector (f p₁) (f p₂)) = perpBisector p₁ p₂ := by
ext x
theorem Isometry.preimage_perpBisector {f : P → P'} (h : Isometry f) (p₁ p₂ : P) : f ⁻¹' (perpBisector (f p₁) (f p₂)) = perpBisector p₁ p₂ := by
Mathlib.Geometry.Euclidean.PerpBisector.141_0.WKtplj3xHYGfYbJ
theorem Isometry.preimage_perpBisector {f : P → P'} (h : Isometry f) (p₁ p₂ : P) : f ⁻¹' (perpBisector (f p₁) (f p₂)) = perpBisector p₁ p₂
Mathlib_Geometry_Euclidean_PerpBisector
case h V : Type u_4 P : Type u_1 V' : Type u_3 P' : Type u_2 inst✝⁷ : NormedAddCommGroup V inst✝⁶ : InnerProductSpace ℝ V inst✝⁵ : MetricSpace P inst✝⁴ : NormedAddTorsor V P inst✝³ : NormedAddCommGroup V' inst✝² : InnerProductSpace ℝ V' inst✝¹ : MetricSpace P' inst✝ : NormedAddTorsor V' P' f : P → P' h : Isometry f p₁ p₂ x : P ⊢ x ∈ f ⁻¹' ↑(perpBisector (f p₁) (f p₂)) ↔ x ∈ ↑(perpBisector p₁ p₂)
/- Copyright (c) 2023 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Joseph Myers -/ import Mathlib.Analysis.InnerProductSpace.Orthogonal #align_import geometry.euclidean.basic from "leanprover-community/mathlib"@"2de9c37fa71dde2f1c6feff19876dd6a7b1519f0" /-! # Perpendicular bisector of a segment We define `AffineSubspace.perpBisector p₁ p₂` to be the perpendicular bisector of the segment `[p₁, p₂]`, as a bundled affine subspace. We also prove that a point belongs to the perpendicular bisector if and only if it is equidistant from `p₁` and `p₂`, as well as a few linear equations that define this subspace. ## Keywords euclidean geometry, perpendicular, perpendicular bisector, line segment bisector, equidistant -/ set_option autoImplicit true open Set open scoped BigOperators RealInnerProductSpace variable [NormedAddCommGroup V] [InnerProductSpace ℝ V] [MetricSpace P] variable [NormedAddTorsor V P] noncomputable section namespace AffineSubspace variable {c c₁ c₂ p₁ p₂ : P} /-- Perpendicular bisector of a segment in a Euclidean affine space. -/ def perpBisector (p₁ p₂ : P) : AffineSubspace ℝ P := .comap ((AffineEquiv.vaddConst ℝ (midpoint ℝ p₁ p₂)).symm : P →ᵃ[ℝ] V) <| (LinearMap.ker (innerₛₗ ℝ (p₂ -ᵥ p₁))).toAffineSubspace /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `p₂ -ᵥ p₁` is orthogonal to `c -ᵥ midpoint ℝ p₁ p₂`. -/ theorem mem_perpBisector_iff_inner_eq_zero' : c ∈ perpBisector p₁ p₂ ↔ ⟪p₂ -ᵥ p₁, c -ᵥ midpoint ℝ p₁ p₂⟫ = 0 := Iff.rfl /-- A point `c` belongs the perpendicular bisector of `[p₁, p₂] iff `c -ᵥ midpoint ℝ p₁ p₂` is orthogonal to `p₂ -ᵥ p₁`. -/ theorem mem_perpBisector_iff_inner_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ midpoint ℝ p₁ p₂, p₂ -ᵥ p₁⟫ = 0 := inner_eq_zero_symm theorem mem_perpBisector_iff_inner_pointReflection_vsub_eq_zero : c ∈ perpBisector p₁ p₂ ↔ ⟪Equiv.pointReflection c p₁ -ᵥ p₂, p₂ -ᵥ p₁⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, Equiv.pointReflection_apply, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left, vadd_vsub_assoc] simp theorem mem_perpBisector_pointReflection_iff_inner_eq_zero : c ∈ perpBisector p₁ (Equiv.pointReflection p₂ p₁) ↔ ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ = 0 := by rw [mem_perpBisector_iff_inner_eq_zero, midpoint_pointReflection_right, Equiv.pointReflection_apply, vadd_vsub_assoc, inner_add_right, add_self_eq_zero, ← neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev] theorem midpoint_mem_perpBisector (p₁ p₂ : P) : midpoint ℝ p₁ p₂ ∈ perpBisector p₁ p₂ := by simp [mem_perpBisector_iff_inner_eq_zero] theorem perpBisector_nonempty : (perpBisector p₁ p₂ : Set P).Nonempty := ⟨_, midpoint_mem_perpBisector _ _⟩ @[simp] theorem direction_perpBisector (p₁ p₂ : P) : (perpBisector p₁ p₂).direction = (ℝ ∙ (p₂ -ᵥ p₁))ᗮ := by erw [perpBisector, comap_symm, map_direction, Submodule.map_id, Submodule.toAffineSubspace_direction] ext x exact Submodule.mem_orthogonal_singleton_iff_inner_right.symm theorem mem_perpBisector_iff_inner_eq_inner : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = ⟪c -ᵥ p₂, p₁ -ᵥ p₂⟫ := by rw [Iff.comm, mem_perpBisector_iff_inner_eq_zero, ← add_neg_eq_zero, ← inner_neg_right, neg_vsub_eq_vsub_rev, ← inner_add_left, vsub_midpoint, invOf_eq_inv, ← smul_add, real_inner_smul_left]; simp theorem mem_perpBisector_iff_inner_eq : c ∈ perpBisector p₁ p₂ ↔ ⟪c -ᵥ p₁, p₂ -ᵥ p₁⟫ = (dist p₁ p₂) ^ 2 / 2 := by rw [mem_perpBisector_iff_inner_eq_zero, ← vsub_sub_vsub_cancel_right _ _ p₁, inner_sub_left, sub_eq_zero, midpoint_vsub_left, invOf_eq_inv, real_inner_smul_left, real_inner_self_eq_norm_sq, dist_eq_norm_vsub' V, div_eq_inv_mul] theorem mem_perpBisector_iff_dist_eq : c ∈ perpBisector p₁ p₂ ↔ dist c p₁ = dist c p₂ := by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, ← real_inner_add_sub_eq_zero_iff, vsub_sub_vsub_cancel_left, inner_add_left, add_eq_zero_iff_eq_neg, ← inner_neg_right, neg_vsub_eq_vsub_rev, mem_perpBisector_iff_inner_eq_inner] theorem mem_perpBisector_iff_dist_eq' : c ∈ perpBisector p₁ p₂ ↔ dist p₁ c = dist p₂ c := by simp only [mem_perpBisector_iff_dist_eq, dist_comm] theorem perpBisector_comm (p₁ p₂ : P) : perpBisector p₁ p₂ = perpBisector p₂ p₁ := by ext c; simp only [mem_perpBisector_iff_dist_eq, eq_comm] @[simp] theorem right_mem_perpBisector : p₂ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by simpa [mem_perpBisector_iff_inner_eq_inner] using eq_comm @[simp] theorem left_mem_perpBisector : p₁ ∈ perpBisector p₁ p₂ ↔ p₁ = p₂ := by rw [perpBisector_comm, right_mem_perpBisector, eq_comm] @[simp] theorem perpBisector_self (p : P) : perpBisector p p = ⊤ := top_unique <| fun _ ↦ by simp [mem_perpBisector_iff_inner_eq_inner] @[simp] theorem perpBisector_eq_top : perpBisector p₁ p₂ = ⊤ ↔ p₁ = p₂ := by refine ⟨fun h ↦ ?_, fun h ↦ h ▸ perpBisector_self _⟩ rw [← left_mem_perpBisector, h] trivial @[simp] theorem perpBisector_ne_bot : perpBisector p₁ p₂ ≠ ⊥ := by rw [← nonempty_iff_ne_bot]; exact perpBisector_nonempty end AffineSubspace open AffineSubspace namespace EuclideanGeometry /-- Suppose that `c₁` is equidistant from `p₁` and `p₂`, and the same applies to `c₂`. Then the vector between `c₁` and `c₂` is orthogonal to that between `p₁` and `p₂`. (In two dimensions, this says that the diagonals of a kite are orthogonal.) -/ theorem inner_vsub_vsub_of_dist_eq_of_dist_eq {c₁ c₂ p₁ p₂ : P} (hc₁ : dist p₁ c₁ = dist p₂ c₁) (hc₂ : dist p₁ c₂ = dist p₂ c₂) : ⟪c₂ -ᵥ c₁, p₂ -ᵥ p₁⟫ = 0 := by rw [← Submodule.mem_orthogonal_singleton_iff_inner_left, ← direction_perpBisector] apply vsub_mem_direction <;> rwa [mem_perpBisector_iff_dist_eq'] #align euclidean_geometry.inner_vsub_vsub_of_dist_eq_of_dist_eq EuclideanGeometry.inner_vsub_vsub_of_dist_eq_of_dist_eq end EuclideanGeometry variable [NormedAddCommGroup V'] [InnerProductSpace ℝ V'] [MetricSpace P'] variable [NormedAddTorsor V' P'] theorem Isometry.preimage_perpBisector {f : P → P'} (h : Isometry f) (p₁ p₂ : P) : f ⁻¹' (perpBisector (f p₁) (f p₂)) = perpBisector p₁ p₂ := by ext x;
simp [mem_perpBisector_iff_dist_eq, h.dist_eq]
theorem Isometry.preimage_perpBisector {f : P → P'} (h : Isometry f) (p₁ p₂ : P) : f ⁻¹' (perpBisector (f p₁) (f p₂)) = perpBisector p₁ p₂ := by ext x;
Mathlib.Geometry.Euclidean.PerpBisector.141_0.WKtplj3xHYGfYbJ
theorem Isometry.preimage_perpBisector {f : P → P'} (h : Isometry f) (p₁ p₂ : P) : f ⁻¹' (perpBisector (f p₁) (f p₂)) = perpBisector p₁ p₂
Mathlib_Geometry_Euclidean_PerpBisector
I : Type u f : I → Type v x y : (i : I) → f i i✝ : I α : Type u_1 inst✝² : (i : I) → SMul α (f i) inst✝¹ : ∀ (i : I), Nonempty (f i) i : I inst✝ : FaithfulSMul α (f i) m₁✝ m₂✝ : α h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a a : f i ⊢ m₁✝ • a = m₂✝ • a
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by
classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this
/-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by
Mathlib.GroupTheory.GroupAction.Pi.102_0.o1qTP9EuP25B013
/-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i)
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i✝ : I α : Type u_1 inst✝² : (i : I) → SMul α (f i) inst✝¹ : ∀ (i : I), Nonempty (f i) i : I inst✝ : FaithfulSMul α (f i) m₁✝ m₂✝ : α h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a a : f i ⊢ m₁✝ • a = m₂✝ • a
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical
have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i
/-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical
Mathlib.GroupTheory.GroupAction.Pi.102_0.o1qTP9EuP25B013
/-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i)
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i✝ : I α : Type u_1 inst✝² : (i : I) → SMul α (f i) inst✝¹ : ∀ (i : I), Nonempty (f i) i : I inst✝ : FaithfulSMul α (f i) m₁✝ m₂✝ : α h : ∀ (a : (i : I) → f i), m₁✝ • a = m₂✝ • a a : f i this : (m₁✝ • Function.update (fun j => Classical.choice (_ : Nonempty (f j))) i a) i = (m₂✝ • Function.update (fun j => Classical.choice (_ : Nonempty (f j))) i a) i ⊢ m₁✝ • a = m₂✝ • a
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i
simpa using this
/-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i
Mathlib.GroupTheory.GroupAction.Pi.102_0.o1qTP9EuP25B013
/-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i)
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → Zero (g i) inst✝ : (i : I) → SMulZeroClass (f i) (g i) ⊢ ∀ (a : (i : I) → f i), a • 0 = 0
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by
intros
instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by
Mathlib.GroupTheory.GroupAction.Pi.151_0.o1qTP9EuP25B013
instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → Zero (g i) inst✝ : (i : I) → SMulZeroClass (f i) (g i) a✝ : (i : I) → f i ⊢ a✝ • 0 = 0
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros;
ext x
instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros;
Mathlib.GroupTheory.GroupAction.Pi.151_0.o1qTP9EuP25B013
instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
case h I : Type u f : I → Type v x✝ y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → Zero (g i) inst✝ : (i : I) → SMulZeroClass (f i) (g i) a✝ : (i : I) → f i x : I ⊢ (a✝ • 0) x = OfNat.ofNat 0 x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x;
exact smul_zero _
instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x;
Mathlib.GroupTheory.GroupAction.Pi.151_0.o1qTP9EuP25B013
instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) ⊢ ∀ (a : (i : I) → f i), a • 0 = 0
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by
intros
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by
Mathlib.GroupTheory.GroupAction.Pi.162_0.o1qTP9EuP25B013
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i ⊢ a✝ • 0 = 0
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros;
ext x
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros;
Mathlib.GroupTheory.GroupAction.Pi.162_0.o1qTP9EuP25B013
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
case h I : Type u f : I → Type v x✝ y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i x : I ⊢ (a✝ • 0) x = OfNat.ofNat 0 x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x;
exact smul_zero _
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x;
Mathlib.GroupTheory.GroupAction.Pi.162_0.o1qTP9EuP25B013
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) ⊢ ∀ (a : (i : I) → f i) (x y : (i : I) → g i), a • (x + y) = a • x + a • y
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by
intros
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by
Mathlib.GroupTheory.GroupAction.Pi.162_0.o1qTP9EuP25B013
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i x✝ y✝ : (i : I) → g i ⊢ a✝ • (x✝ + y✝) = a✝ • x✝ + a✝ • y✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros;
ext x
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros;
Mathlib.GroupTheory.GroupAction.Pi.162_0.o1qTP9EuP25B013
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
case h I : Type u f : I → Type v x✝¹ y : (i : I) → f i i : I g : I → Type u_1 n : (i : I) → AddZeroClass (g i) inst✝ : (i : I) → DistribSMul (f i) (g i) a✝ : (i : I) → f i x✝ y✝ : (i : I) → g i x : I ⊢ (a✝ • (x✝ + y✝)) x = (a✝ • x✝ + a✝ • y✝) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x;
exact smul_add _ _ _
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x;
Mathlib.GroupTheory.GroupAction.Pi.162_0.o1qTP9EuP25B013
instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) ⊢ ∀ (r : (i : I) → f i) (x y : (i : I) → g i), r • (x * y) = r • x * r • y
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by
intros
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by
Mathlib.GroupTheory.GroupAction.Pi.207_0.o1qTP9EuP25B013
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i x✝ y✝ : (i : I) → g i ⊢ r✝ • (x✝ * y✝) = r✝ • x✝ * r✝ • y✝
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros
ext x
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros
Mathlib.GroupTheory.GroupAction.Pi.207_0.o1qTP9EuP25B013
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul
Mathlib_GroupTheory_GroupAction_Pi
case h I : Type u f : I → Type v x✝¹ y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i x✝ y✝ : (i : I) → g i x : I ⊢ (r✝ • (x✝ * y✝)) x = (r✝ • x✝ * r✝ • y✝) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x
apply smul_mul'
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x
Mathlib.GroupTheory.GroupAction.Pi.207_0.o1qTP9EuP25B013
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) ⊢ ∀ (r : (i : I) → f i), r • 1 = 1
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by
intros
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by
Mathlib.GroupTheory.GroupAction.Pi.207_0.o1qTP9EuP25B013
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f : I → Type v x y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i ⊢ r✝ • 1 = 1
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros
ext x
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros
Mathlib.GroupTheory.GroupAction.Pi.207_0.o1qTP9EuP25B013
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul
Mathlib_GroupTheory_GroupAction_Pi
case h I : Type u f : I → Type v x✝ y : (i : I) → f i i : I g : I → Type u_1 m : (i : I) → Monoid (f i) n : (i : I) → Monoid (g i) inst✝ : (i : I) → MulDistribMulAction (f i) (g i) r✝ : (i : I) → f i x : I ⊢ (r✝ • 1) x = OfNat.ofNat 1 x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x
apply smul_one
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x
Mathlib.GroupTheory.GroupAction.Pi.207_0.o1qTP9EuP25B013
instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β ⊢ extend f (r • g) (r • e) x = (r • extend f g e) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x apply smul_one #align pi.mul_distrib_mul_action' Pi.mulDistribMulAction' end Pi namespace Function /-- Non-dependent version of `Pi.smul`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vadd`. Lean gets confused by the dependent instance if this is not present."] instance hasSMul {ι R M : Type*} [SMul R M] : SMul R (ι → M) := Pi.instSMul #align function.has_smul Function.hasSMul #align function.has_vadd Function.hasVAdd /-- Non-dependent version of `Pi.smulCommClass`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vaddCommClass`. Lean gets confused by the dependent instance if this is not present."] instance smulCommClass {ι α β M : Type*} [SMul α M] [SMul β M] [SMulCommClass α β M] : SMulCommClass α β (ι → M) := Pi.smulCommClass #align function.smul_comm_class Function.smulCommClass #align function.vadd_comm_class Function.vaddCommClass @[to_additive] theorem update_smul {α : Type*} [∀ i, SMul α (f i)] [DecidableEq I] (c : α) (f₁ : ∀ i, f i) (i : I) (x₁ : f i) : update (c • f₁) i (c • x₁) = c • update f₁ i x₁ := funext fun j => (apply_update (β := f) (fun _ => (c • ·)) f₁ i x₁ j).symm #align function.update_smul Function.update_smul #align function.update_vadd Function.update_vadd end Function namespace Set @[to_additive] theorem piecewise_smul {α : Type*} [∀ i, SMul α (f i)] (s : Set I) [∀ i, Decidable (i ∈ s)] (c : α) (f₁ g₁ : ∀ i, f i) : s.piecewise (c • f₁) (c • g₁) = c • s.piecewise f₁ g₁ := s.piecewise_op (δ' := f) f₁ _ fun _ => (c • ·) #align set.piecewise_smul Set.piecewise_smul #align set.piecewise_vadd Set.piecewise_vadd end Set section Extend @[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable`
haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable`
Mathlib.GroupTheory.GroupAction.Pi.267_0.o1qTP9EuP25B013
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) ⊢ extend f (r • g) (r • e) x = (r • extend f g e) x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x apply smul_one #align pi.mul_distrib_mul_action' Pi.mulDistribMulAction' end Pi namespace Function /-- Non-dependent version of `Pi.smul`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vadd`. Lean gets confused by the dependent instance if this is not present."] instance hasSMul {ι R M : Type*} [SMul R M] : SMul R (ι → M) := Pi.instSMul #align function.has_smul Function.hasSMul #align function.has_vadd Function.hasVAdd /-- Non-dependent version of `Pi.smulCommClass`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vaddCommClass`. Lean gets confused by the dependent instance if this is not present."] instance smulCommClass {ι α β M : Type*} [SMul α M] [SMul β M] [SMulCommClass α β M] : SMulCommClass α β (ι → M) := Pi.smulCommClass #align function.smul_comm_class Function.smulCommClass #align function.vadd_comm_class Function.vaddCommClass @[to_additive] theorem update_smul {α : Type*} [∀ i, SMul α (f i)] [DecidableEq I] (c : α) (f₁ : ∀ i, f i) (i : I) (x₁ : f i) : update (c • f₁) i (c • x₁) = c • update f₁ i x₁ := funext fun j => (apply_update (β := f) (fun _ => (c • ·)) f₁ i x₁ j).symm #align function.update_smul Function.update_smul #align function.update_vadd Function.update_vadd end Function namespace Set @[to_additive] theorem piecewise_smul {α : Type*} [∀ i, SMul α (f i)] (s : Set I) [∀ i, Decidable (i ∈ s)] (c : α) (f₁ g₁ : ∀ i, f i) : s.piecewise (c • f₁) (c • g₁) = c • s.piecewise f₁ g₁ := s.piecewise_op (δ' := f) f₁ _ fun _ => (c • ·) #align set.piecewise_smul Set.piecewise_smul #align set.piecewise_vadd Set.piecewise_vadd end Set section Extend @[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _
rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def]
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _
Mathlib.GroupTheory.GroupAction.Pi.267_0.o1qTP9EuP25B013
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e
Mathlib_GroupTheory_GroupAction_Pi
I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) ⊢ (if h : ∃ a, f a = x then (r • g) (Classical.choose h) else r • e x) = r • if h : ∃ a, f a = x then g (Classical.choose h) else e x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x apply smul_one #align pi.mul_distrib_mul_action' Pi.mulDistribMulAction' end Pi namespace Function /-- Non-dependent version of `Pi.smul`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vadd`. Lean gets confused by the dependent instance if this is not present."] instance hasSMul {ι R M : Type*} [SMul R M] : SMul R (ι → M) := Pi.instSMul #align function.has_smul Function.hasSMul #align function.has_vadd Function.hasVAdd /-- Non-dependent version of `Pi.smulCommClass`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vaddCommClass`. Lean gets confused by the dependent instance if this is not present."] instance smulCommClass {ι α β M : Type*} [SMul α M] [SMul β M] [SMulCommClass α β M] : SMulCommClass α β (ι → M) := Pi.smulCommClass #align function.smul_comm_class Function.smulCommClass #align function.vadd_comm_class Function.vaddCommClass @[to_additive] theorem update_smul {α : Type*} [∀ i, SMul α (f i)] [DecidableEq I] (c : α) (f₁ : ∀ i, f i) (i : I) (x₁ : f i) : update (c • f₁) i (c • x₁) = c • update f₁ i x₁ := funext fun j => (apply_update (β := f) (fun _ => (c • ·)) f₁ i x₁ j).symm #align function.update_smul Function.update_smul #align function.update_vadd Function.update_vadd end Function namespace Set @[to_additive] theorem piecewise_smul {α : Type*} [∀ i, SMul α (f i)] (s : Set I) [∀ i, Decidable (i ∈ s)] (c : α) (f₁ g₁ : ∀ i, f i) : s.piecewise (c • f₁) (c • g₁) = c • s.piecewise f₁ g₁ := s.piecewise_op (δ' := f) f₁ _ fun _ => (c • ·) #align set.piecewise_smul Set.piecewise_smul #align set.piecewise_vadd Set.piecewise_vadd end Set section Extend @[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def]
split_ifs
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def]
Mathlib.GroupTheory.GroupAction.Pi.267_0.o1qTP9EuP25B013
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e
Mathlib_GroupTheory_GroupAction_Pi
case pos I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) h✝ : ∃ a, f a = x ⊢ (r • g) (Classical.choose h✝) = r • g (Classical.choose h✝)
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x apply smul_one #align pi.mul_distrib_mul_action' Pi.mulDistribMulAction' end Pi namespace Function /-- Non-dependent version of `Pi.smul`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vadd`. Lean gets confused by the dependent instance if this is not present."] instance hasSMul {ι R M : Type*} [SMul R M] : SMul R (ι → M) := Pi.instSMul #align function.has_smul Function.hasSMul #align function.has_vadd Function.hasVAdd /-- Non-dependent version of `Pi.smulCommClass`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vaddCommClass`. Lean gets confused by the dependent instance if this is not present."] instance smulCommClass {ι α β M : Type*} [SMul α M] [SMul β M] [SMulCommClass α β M] : SMulCommClass α β (ι → M) := Pi.smulCommClass #align function.smul_comm_class Function.smulCommClass #align function.vadd_comm_class Function.vaddCommClass @[to_additive] theorem update_smul {α : Type*} [∀ i, SMul α (f i)] [DecidableEq I] (c : α) (f₁ : ∀ i, f i) (i : I) (x₁ : f i) : update (c • f₁) i (c • x₁) = c • update f₁ i x₁ := funext fun j => (apply_update (β := f) (fun _ => (c • ·)) f₁ i x₁ j).symm #align function.update_smul Function.update_smul #align function.update_vadd Function.update_vadd end Function namespace Set @[to_additive] theorem piecewise_smul {α : Type*} [∀ i, SMul α (f i)] (s : Set I) [∀ i, Decidable (i ∈ s)] (c : α) (f₁ g₁ : ∀ i, f i) : s.piecewise (c • f₁) (c • g₁) = c • s.piecewise f₁ g₁ := s.piecewise_op (δ' := f) f₁ _ fun _ => (c • ·) #align set.piecewise_smul Set.piecewise_smul #align set.piecewise_vadd Set.piecewise_vadd end Set section Extend @[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def] split_ifs <;>
rfl
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def] split_ifs <;>
Mathlib.GroupTheory.GroupAction.Pi.267_0.o1qTP9EuP25B013
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e
Mathlib_GroupTheory_GroupAction_Pi
case neg I : Type u f✝ : I → Type v x✝ y : (i : I) → f✝ i i : I R : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : SMul R γ r : R f : α → β g : α → γ e : β → γ x : β this : Decidable (∃ a, f a = x) h✝ : ¬∃ a, f a = x ⊢ r • e x = r • e x
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import Mathlib.Algebra.Group.Pi import Mathlib.GroupTheory.GroupAction.Defs #align_import group_theory.group_action.pi from "leanprover-community/mathlib"@"bbeb185db4ccee8ed07dc48449414ebfa39cb821" /-! # Pi instances for multiplicative actions This file defines instances for `MulAction` and related structures on `Pi` types. ## See also * `GroupTheory.GroupAction.option` * `GroupTheory.GroupAction.prod` * `GroupTheory.GroupAction.sigma` * `GroupTheory.GroupAction.sum` -/ universe u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variable (x y : ∀ i, f i) (i : I) namespace Pi @[to_additive] instance smul' {g : I → Type*} [∀ i, SMul (f i) (g i)] : SMul (∀ i, f i) (∀ i : I, g i) := ⟨fun s x => fun i => s i • x i⟩ #align pi.has_smul' Pi.smul' #align pi.has_vadd' Pi.vadd' @[to_additive (attr := simp)] theorem smul_apply' {g : I → Type*} [∀ i, SMul (f i) (g i)] (s : ∀ i, f i) (x : ∀ i, g i) : (s • x) i = s i • x i := rfl #align pi.smul_apply' Pi.smul_apply' #align pi.vadd_apply' Pi.vadd_apply' -- Porting note: `to_additive` fails to correctly translate name @[to_additive Pi.vaddAssocClass] instance isScalarTower {α β : Type*} [SMul α β] [∀ i, SMul β <| f i] [∀ i, SMul α <| f i] [∀ i, IsScalarTower α β (f i)] : IsScalarTower α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_assoc x y (z i)⟩ #align pi.is_scalar_tower Pi.isScalarTower #align pi.vadd_assoc_class Pi.vaddAssocClass @[to_additive Pi.vaddAssocClass'] instance isScalarTower' {g : I → Type*} {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul (f i) (g i)] [∀ i, SMul α <| g i] [∀ i, IsScalarTower α (f i) (g i)] : IsScalarTower α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_assoc x (y i) (z i)⟩ #align pi.is_scalar_tower' Pi.isScalarTower' #align pi.vadd_assoc_class' Pi.vaddAssocClass' @[to_additive Pi.vaddAssocClass''] instance isScalarTower'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (f i) (g i)] [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, IsScalarTower (f i) (g i) (h i)] : IsScalarTower (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_assoc (x i) (y i) (z i)⟩ #align pi.is_scalar_tower'' Pi.isScalarTower'' #align pi.vadd_assoc_class'' Pi.vaddAssocClass'' @[to_additive] instance smulCommClass {α β : Type*} [∀ i, SMul α <| f i] [∀ i, SMul β <| f i] [∀ i, SMulCommClass α β (f i)] : SMulCommClass α β (∀ i : I, f i) := ⟨fun x y z => funext fun i => smul_comm x y (z i)⟩ #align pi.smul_comm_class Pi.smulCommClass #align pi.vadd_comm_class Pi.vaddCommClass @[to_additive] instance smulCommClass' {g : I → Type*} {α : Type*} [∀ i, SMul α <| g i] [∀ i, SMul (f i) (g i)] [∀ i, SMulCommClass α (f i) (g i)] : SMulCommClass α (∀ i : I, f i) (∀ i : I, g i) := ⟨fun x y z => funext fun i => smul_comm x (y i) (z i)⟩ #align pi.smul_comm_class' Pi.smulCommClass' #align pi.vadd_comm_class' Pi.vaddCommClass' @[to_additive] instance smulCommClass'' {g : I → Type*} {h : I → Type*} [∀ i, SMul (g i) (h i)] [∀ i, SMul (f i) (h i)] [∀ i, SMulCommClass (f i) (g i) (h i)] : SMulCommClass (∀ i, f i) (∀ i, g i) (∀ i, h i) := ⟨fun x y z => funext fun i => smul_comm (x i) (y i) (z i)⟩ #align pi.smul_comm_class'' Pi.smulCommClass'' #align pi.vadd_comm_class'' Pi.vaddCommClass'' @[to_additive] instance isCentralScalar {α : Type*} [∀ i, SMul α <| f i] [∀ i, SMul αᵐᵒᵖ <| f i] [∀ i, IsCentralScalar α (f i)] : IsCentralScalar α (∀ i, f i) := ⟨fun _ _ => funext fun _ => op_smul_eq_smul _ _⟩ /-- If `f i` has a faithful scalar action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred. -/ @[to_additive "If `f i` has a faithful additive action for a given `i`, then so does `Π i, f i`. This is not an instance as `i` cannot be inferred"] theorem faithfulSMul_at {α : Type*} [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] (i : I) [FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := ⟨fun h => eq_of_smul_eq_smul fun a : f i => by classical have := congr_fun (h <| Function.update (fun j => Classical.choice (‹∀ i, Nonempty (f i)› j)) i a) i simpa using this⟩ #align pi.has_faithful_smul_at Pi.faithfulSMul_at #align pi.has_faithful_vadd_at Pi.faithfulVAdd_at @[to_additive] instance faithfulSMul {α : Type*} [Nonempty I] [∀ i, SMul α <| f i] [∀ i, Nonempty (f i)] [∀ i, FaithfulSMul α (f i)] : FaithfulSMul α (∀ i, f i) := let ⟨i⟩ := ‹Nonempty I› faithfulSMul_at i #align pi.has_faithful_smul Pi.faithfulSMul #align pi.has_faithful_vadd Pi.faithfulVAdd @[to_additive] instance mulAction (α) {m : Monoid α} [∀ i, MulAction α <| f i] : @MulAction α (∀ i : I, f i) m where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul α _ #align pi.mul_action Pi.mulAction #align pi.add_action Pi.addAction @[to_additive] instance mulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} [∀ i, MulAction (f i) (g i)] : @MulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) where smul := (· • ·) mul_smul _ _ _ := funext fun _ => mul_smul _ _ _ one_smul _ := funext fun _ => one_smul _ _ #align pi.mul_action' Pi.mulAction' #align pi.add_action' Pi.addAction' instance smulZeroClass (α) {n : ∀ i, Zero <| f i} [∀ i, SMulZeroClass α <| f i] : @SMulZeroClass α (∀ i : I, f i) (@Pi.instZero I f n) where smul_zero _ := funext fun _ => smul_zero _ #align pi.smul_zero_class Pi.smulZeroClass instance smulZeroClass' {g : I → Type*} {n : ∀ i, Zero <| g i} [∀ i, SMulZeroClass (f i) (g i)] : @SMulZeroClass (∀ i, f i) (∀ i : I, g i) (@Pi.instZero I g n) where smul_zero := by intros; ext x; exact smul_zero _ #align pi.smul_zero_class' Pi.smulZeroClass' instance distribSMul (α) {n : ∀ i, AddZeroClass <| f i} [∀ i, DistribSMul α <| f i] : @DistribSMul α (∀ i : I, f i) (@Pi.addZeroClass I f n) where smul_zero _ := funext fun _ => smul_zero _ smul_add _ _ _ := funext fun _ => smul_add _ _ _ #align pi.distrib_smul Pi.distribSMul instance distribSMul' {g : I → Type*} {n : ∀ i, AddZeroClass <| g i} [∀ i, DistribSMul (f i) (g i)] : @DistribSMul (∀ i, f i) (∀ i : I, g i) (@Pi.addZeroClass I g n) where smul_zero := by intros; ext x; exact smul_zero _ smul_add := by intros; ext x; exact smul_add _ _ _ #align pi.distrib_smul' Pi.distribSMul' instance distribMulAction (α) {m : Monoid α} {n : ∀ i, AddMonoid <| f i} [∀ i, DistribMulAction α <| f i] : @DistribMulAction α (∀ i : I, f i) m (@Pi.addMonoid I f n) := { Pi.mulAction _, Pi.distribSMul _ with } #align pi.distrib_mul_action Pi.distribMulAction instance distribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, AddMonoid <| g i} [∀ i, DistribMulAction (f i) (g i)] : @DistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.addMonoid I g n) := { Pi.mulAction', Pi.distribSMul' with } #align pi.distrib_mul_action' Pi.distribMulAction' theorem single_smul {α} [Monoid α] [∀ i, AddMonoid <| f i] [∀ i, DistribMulAction α <| f i] [DecidableEq I] (i : I) (r : α) (x : f i) : single i (r • x) = r • single i x := single_op (fun i : I => (r • · : f i → f i)) (fun _ => smul_zero _) _ _ #align pi.single_smul Pi.single_smul -- Porting note: Lean4 cannot infer the non-dependent function `f := fun _ => β` /-- A version of `Pi.single_smul` for non-dependent functions. It is useful in cases where Lean fails to apply `Pi.single_smul`. -/ theorem single_smul' {α β} [Monoid α] [AddMonoid β] [DistribMulAction α β] [DecidableEq I] (i : I) (r : α) (x : β) : single (f := fun _ => β) i (r • x) = r • single (f := fun _ => β) i x := single_smul (f := fun _ => β) i r x #align pi.single_smul' Pi.single_smul' theorem single_smul₀ {g : I → Type*} [∀ i, MonoidWithZero (f i)] [∀ i, AddMonoid (g i)] [∀ i, DistribMulAction (f i) (g i)] [DecidableEq I] (i : I) (r : f i) (x : g i) : single i (r • x) = single i r • single i x := single_op₂ (fun i : I => ((· • ·) : f i → g i → g i)) (fun _ => smul_zero _) _ _ _ #align pi.single_smul₀ Pi.single_smul₀ instance mulDistribMulAction (α) {m : Monoid α} {n : ∀ i, Monoid <| f i} [∀ i, MulDistribMulAction α <| f i] : @MulDistribMulAction α (∀ i : I, f i) m (@Pi.monoid I f n) := { Pi.mulAction _ with smul_one := fun _ => funext fun _ => smul_one _ smul_mul := fun _ _ _ => funext fun _ => smul_mul' _ _ _ } #align pi.mul_distrib_mul_action Pi.mulDistribMulAction instance mulDistribMulAction' {g : I → Type*} {m : ∀ i, Monoid (f i)} {n : ∀ i, Monoid <| g i} [∀ i, MulDistribMulAction (f i) (g i)] : @MulDistribMulAction (∀ i, f i) (∀ i : I, g i) (@Pi.monoid I f m) (@Pi.monoid I g n) where smul_mul := by intros ext x apply smul_mul' smul_one := by intros ext x apply smul_one #align pi.mul_distrib_mul_action' Pi.mulDistribMulAction' end Pi namespace Function /-- Non-dependent version of `Pi.smul`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vadd`. Lean gets confused by the dependent instance if this is not present."] instance hasSMul {ι R M : Type*} [SMul R M] : SMul R (ι → M) := Pi.instSMul #align function.has_smul Function.hasSMul #align function.has_vadd Function.hasVAdd /-- Non-dependent version of `Pi.smulCommClass`. Lean gets confused by the dependent instance if this is not present. -/ @[to_additive "Non-dependent version of `Pi.vaddCommClass`. Lean gets confused by the dependent instance if this is not present."] instance smulCommClass {ι α β M : Type*} [SMul α M] [SMul β M] [SMulCommClass α β M] : SMulCommClass α β (ι → M) := Pi.smulCommClass #align function.smul_comm_class Function.smulCommClass #align function.vadd_comm_class Function.vaddCommClass @[to_additive] theorem update_smul {α : Type*} [∀ i, SMul α (f i)] [DecidableEq I] (c : α) (f₁ : ∀ i, f i) (i : I) (x₁ : f i) : update (c • f₁) i (c • x₁) = c • update f₁ i x₁ := funext fun j => (apply_update (β := f) (fun _ => (c • ·)) f₁ i x₁ j).symm #align function.update_smul Function.update_smul #align function.update_vadd Function.update_vadd end Function namespace Set @[to_additive] theorem piecewise_smul {α : Type*} [∀ i, SMul α (f i)] (s : Set I) [∀ i, Decidable (i ∈ s)] (c : α) (f₁ g₁ : ∀ i, f i) : s.piecewise (c • f₁) (c • g₁) = c • s.piecewise f₁ g₁ := s.piecewise_op (δ' := f) f₁ _ fun _ => (c • ·) #align set.piecewise_smul Set.piecewise_smul #align set.piecewise_vadd Set.piecewise_vadd end Set section Extend @[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def] split_ifs <;>
rfl
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e := funext fun x => by -- Porting note: Lean4 is unable to automatically call `Classical.propDecidable` haveI : Decidable (∃ a : α, f a = x) := Classical.propDecidable _ rw [extend_def, Pi.smul_apply, Pi.smul_apply, extend_def] split_ifs <;>
Mathlib.GroupTheory.GroupAction.Pi.267_0.o1qTP9EuP25B013
@[to_additive] theorem Function.extend_smul {R α β γ : Type*} [SMul R γ] (r : R) (f : α → β) (g : α → γ) (e : β → γ) : Function.extend f (r • g) (r • e) = r • Function.extend f g e
Mathlib_GroupTheory_GroupAction_Pi
α : Type u_1 s : Set α a : α ⊢ op a ∈ Set.op s ↔ a ∈ s
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by
rfl
@[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by
Mathlib.Data.Set.Opposite.38_0.2CXAU37XQBxMDqP
@[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s
Mathlib_Data_Set_Opposite
α : Type u_1 s : Set αᵒᵖ a : αᵒᵖ ⊢ a.unop ∈ Set.unop s ↔ a ∈ s
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by
rfl
@[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by
Mathlib.Data.Set.Opposite.47_0.2CXAU37XQBxMDqP
@[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s
Mathlib_Data_Set_Opposite
α : Type u_1 x : α ⊢ Set.op {x} = {op x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by
ext
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by
Mathlib.Data.Set.Opposite.75_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x}
Mathlib_Data_Set_Opposite
case h α : Type u_1 x : α x✝ : αᵒᵖ ⊢ x✝ ∈ Set.op {x} ↔ x✝ ∈ {op x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext
constructor
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext
Mathlib.Data.Set.Opposite.75_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x}
Mathlib_Data_Set_Opposite
case h.mp α : Type u_1 x : α x✝ : αᵒᵖ ⊢ x✝ ∈ Set.op {x} → x✝ ∈ {op x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor ·
apply unop_injective
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor ·
Mathlib.Data.Set.Opposite.75_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x}
Mathlib_Data_Set_Opposite
case h.mpr α : Type u_1 x : α x✝ : αᵒᵖ ⊢ x✝ ∈ {op x} → x✝ ∈ Set.op {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective ·
apply op_injective
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective ·
Mathlib.Data.Set.Opposite.75_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x}
Mathlib_Data_Set_Opposite
α : Type u_1 x : αᵒᵖ ⊢ Set.unop {x} = {x.unop}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by
ext
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by
Mathlib.Data.Set.Opposite.83_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x}
Mathlib_Data_Set_Opposite
case h α : Type u_1 x : αᵒᵖ x✝ : α ⊢ x✝ ∈ Set.unop {x} ↔ x✝ ∈ {x.unop}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext
constructor
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext
Mathlib.Data.Set.Opposite.83_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x}
Mathlib_Data_Set_Opposite
case h.mp α : Type u_1 x : αᵒᵖ x✝ : α ⊢ x✝ ∈ Set.unop {x} → x✝ ∈ {x.unop}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor ·
apply op_injective
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor ·
Mathlib.Data.Set.Opposite.83_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x}
Mathlib_Data_Set_Opposite
case h.mpr α : Type u_1 x : αᵒᵖ x✝ : α ⊢ x✝ ∈ {x.unop} → x✝ ∈ Set.unop {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective ·
apply unop_injective
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective ·
Mathlib.Data.Set.Opposite.83_0.2CXAU37XQBxMDqP
@[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x}
Mathlib_Data_Set_Opposite
α : Type u_1 x : α ⊢ Set.unop {op x} = {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by
ext
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by
Mathlib.Data.Set.Opposite.91_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x}
Mathlib_Data_Set_Opposite
case h α : Type u_1 x x✝ : α ⊢ x✝ ∈ Set.unop {op x} ↔ x✝ ∈ {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext
constructor
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext
Mathlib.Data.Set.Opposite.91_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x}
Mathlib_Data_Set_Opposite
case h.mp α : Type u_1 x x✝ : α ⊢ x✝ ∈ Set.unop {op x} → x✝ ∈ {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor ·
apply op_injective
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor ·
Mathlib.Data.Set.Opposite.91_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x}
Mathlib_Data_Set_Opposite
case h.mpr α : Type u_1 x x✝ : α ⊢ x✝ ∈ {x} → x✝ ∈ Set.unop {op x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor · apply op_injective ·
apply unop_injective
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor · apply op_injective ·
Mathlib.Data.Set.Opposite.91_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x}
Mathlib_Data_Set_Opposite
α : Type u_1 x : αᵒᵖ ⊢ Set.op {x.unop} = {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_op_unop Set.singleton_op_unop @[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by
ext
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by
Mathlib.Data.Set.Opposite.99_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x}
Mathlib_Data_Set_Opposite
case h α : Type u_1 x x✝ : αᵒᵖ ⊢ x✝ ∈ Set.op {x.unop} ↔ x✝ ∈ {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_op_unop Set.singleton_op_unop @[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by ext
constructor
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by ext
Mathlib.Data.Set.Opposite.99_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x}
Mathlib_Data_Set_Opposite
case h.mp α : Type u_1 x x✝ : αᵒᵖ ⊢ x✝ ∈ Set.op {x.unop} → x✝ ∈ {x}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_op_unop Set.singleton_op_unop @[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by ext constructor ·
apply unop_injective
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by ext constructor ·
Mathlib.Data.Set.Opposite.99_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x}
Mathlib_Data_Set_Opposite
case h.mpr α : Type u_1 x x✝ : αᵒᵖ ⊢ x✝ ∈ {x} → x✝ ∈ Set.op {x.unop}
/- Copyright (c) 2022 Markus Himmel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Markus Himmel -/ import Mathlib.Data.Opposite import Mathlib.Data.Set.Image #align_import data.set.opposite from "leanprover-community/mathlib"@"fc2ed6f838ce7c9b7c7171e58d78eaf7b438fb0e" /-! # The opposite of a set The opposite of a set `s` is simply the set obtained by taking the opposite of each member of `s`. -/ variable {α : Type*} open Opposite namespace Set /-- The opposite of a set `s` is the set obtained by taking the opposite of each member of `s`. -/ protected def op (s : Set α) : Set αᵒᵖ := unop ⁻¹' s #align set.op Set.op /-- The unop of a set `s` is the set obtained by taking the unop of each member of `s`. -/ protected def unop (s : Set αᵒᵖ) : Set α := op ⁻¹' s #align set.unop Set.unop @[simp] theorem mem_op {s : Set α} {a : αᵒᵖ} : a ∈ s.op ↔ unop a ∈ s := Iff.rfl #align set.mem_op Set.mem_op @[simp 1100] theorem op_mem_op {s : Set α} {a : α} : op a ∈ s.op ↔ a ∈ s := by rfl #align set.op_mem_op Set.op_mem_op @[simp] theorem mem_unop {s : Set αᵒᵖ} {a : α} : a ∈ s.unop ↔ op a ∈ s := Iff.rfl #align set.mem_unop Set.mem_unop @[simp 1100] theorem unop_mem_unop {s : Set αᵒᵖ} {a : αᵒᵖ} : unop a ∈ s.unop ↔ a ∈ s := by rfl #align set.unop_mem_unop Set.unop_mem_unop @[simp] theorem op_unop (s : Set α) : s.op.unop = s := rfl #align set.op_unop Set.op_unop @[simp] theorem unop_op (s : Set αᵒᵖ) : s.unop.op = s := rfl #align set.unop_op Set.unop_op /-- The members of the opposite of a set are in bijection with the members of the set itself. -/ @[simps] def opEquiv_self (s : Set α) : s.op ≃ s := ⟨fun x ↦ ⟨unop x, x.2⟩, fun x ↦ ⟨op x, x.2⟩, fun _ ↦ rfl, fun _ ↦ rfl⟩ #align set.op_equiv_self Set.opEquiv_self #align set.op_equiv_self_apply_coe Set.opEquiv_self_apply_coe #align set.op_equiv_self_symm_apply_coe Set.opEquiv_self_symm_apply_coe /-- Taking opposites as an equivalence of powersets. -/ @[simps] def opEquiv : Set α ≃ Set αᵒᵖ := ⟨Set.op, Set.unop, op_unop, unop_op⟩ #align set.op_equiv Set.opEquiv #align set.op_equiv_symm_apply Set.opEquiv_symm_apply #align set.op_equiv_apply Set.opEquiv_apply @[simp] theorem singleton_op (x : α) : ({x} : Set α).op = {op x} := by ext constructor · apply unop_injective · apply op_injective #align set.singleton_op Set.singleton_op @[simp] theorem singleton_unop (x : αᵒᵖ) : ({x} : Set αᵒᵖ).unop = {unop x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_unop Set.singleton_unop @[simp 1100] theorem singleton_op_unop (x : α) : ({op x} : Set αᵒᵖ).unop = {x} := by ext constructor · apply op_injective · apply unop_injective #align set.singleton_op_unop Set.singleton_op_unop @[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by ext constructor · apply unop_injective ·
apply op_injective
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x} := by ext constructor · apply unop_injective ·
Mathlib.Data.Set.Opposite.99_0.2CXAU37XQBxMDqP
@[simp 1100] theorem singleton_unop_op (x : αᵒᵖ) : ({unop x} : Set α).op = {x}
Mathlib_Data_Set_Opposite
n : ℕ ⊢ bodd (succ n) = !bodd n
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by
simp only [bodd, boddDiv2]
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by
Mathlib.Init.Data.Nat.Bitwise.67_0.OFUBkIQvV236FCW
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n)
Mathlib_Init_Data_Nat_Bitwise
n : ℕ ⊢ (match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(boddDiv2 n).fst
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2]
let ⟨b,m⟩ := boddDiv2 n
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2]
Mathlib.Init.Data.Nat.Bitwise.67_0.OFUBkIQvV236FCW
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n)
Mathlib_Init_Data_Nat_Bitwise
n : ℕ b : Bool m : ℕ ⊢ (match (b, m) with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(b, m).fst
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n
cases b
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n
Mathlib.Init.Data.Nat.Bitwise.67_0.OFUBkIQvV236FCW
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n)
Mathlib_Init_Data_Nat_Bitwise
case false n m : ℕ ⊢ (match (false, m) with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(false, m).fst
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;>
rfl
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;>
Mathlib.Init.Data.Nat.Bitwise.67_0.OFUBkIQvV236FCW
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n)
Mathlib_Init_Data_Nat_Bitwise
case true n m : ℕ ⊢ (match (true, m) with | (false, m) => (true, m) | (true, m) => (false, succ m)).fst = !(true, m).fst
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;>
rfl
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;>
Mathlib.Init.Data.Nat.Bitwise.67_0.OFUBkIQvV236FCW
@[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n)
Mathlib_Init_Data_Nat_Bitwise
m n : ℕ ⊢ bodd (m + n) = bxor (bodd m) (bodd n)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by
induction n
@[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by
Mathlib.Init.Data.Nat.Bitwise.74_0.OFUBkIQvV236FCW
@[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n)
Mathlib_Init_Data_Nat_Bitwise
case zero m : ℕ ⊢ bodd (m + zero) = bxor (bodd m) (bodd zero)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;>
simp_all [add_succ, Bool.xor_not]
@[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;>
Mathlib.Init.Data.Nat.Bitwise.74_0.OFUBkIQvV236FCW
@[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ m n✝ : ℕ n_ih✝ : bodd (m + n✝) = bxor (bodd m) (bodd n✝) ⊢ bodd (m + succ n✝) = bxor (bodd m) (bodd (succ n✝))
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;>
simp_all [add_succ, Bool.xor_not]
@[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;>
Mathlib.Init.Data.Nat.Bitwise.74_0.OFUBkIQvV236FCW
@[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n)
Mathlib_Init_Data_Nat_Bitwise
m n : ℕ ⊢ bodd (m * n) = (bodd m && bodd n)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by
induction' n with n IH
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case zero m : ℕ ⊢ bodd (m * zero) = (bodd m && bodd zero)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH ·
simp
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH ·
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bodd (m * succ n) = (bodd m && bodd (succ n))
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp ·
simp [mul_succ, IH]
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp ·
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (bodd m && bodd n) (bodd m) = (bodd m && !bodd n)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH]
cases bodd m
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH]
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ.false m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (false && bodd n) false = (false && !bodd n)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;>
cases bodd n
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;>
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ.true m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (true && bodd n) true = (true && !bodd n)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;>
cases bodd n
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;>
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ.false.false m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (false && false) false = (false && !false)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
rfl
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ.false.true m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (false && true) false = (false && !true)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
rfl
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ.true.false m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (true && false) true = (true && !false)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
rfl
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
case succ.true.true m n : ℕ IH : bodd (m * n) = (bodd m && bodd n) ⊢ bxor (true && true) true = (true && !true)
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
rfl
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;>
Mathlib.Init.Data.Nat.Bitwise.79_0.OFUBkIQvV236FCW
@[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n)
Mathlib_Init_Data_Nat_Bitwise
n : ℕ ⊢ n % 2 = bif bodd n then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by
have := congr_arg bodd (mod_add_div n 2)
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2 + 2 * (n / 2)) = bodd n ⊢ n % 2 = bif bodd n then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2)
simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2)
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2 + 2 * (n / 2)) = bodd n ⊢ n % 2 = bif bodd n then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says
simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n ⊢ n % 2 = bif bodd n then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this
have _ : ∀ b, and false b = false := by intro b cases b <;> rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n ⊢ ∀ (b : Bool), (false && b) = false
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by
intro b
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n b : Bool ⊢ (false && b) = false
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b
cases b
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case false n : ℕ this : bodd (n % 2) = bodd n ⊢ (false && false) = false
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;>
rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case true n : ℕ this : bodd (n % 2) = bodd n ⊢ (false && true) = false
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;>
rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ n % 2 = bif bodd n then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl
have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ ∀ (b : Bool), bxor b false = b
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by
intro b
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false b : Bool ⊢ bxor b false = b
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b
cases b
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case false n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ bxor false false = false
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;>
rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case true n : ℕ this : bodd (n % 2) = bodd n x✝ : ∀ (b : Bool), (false && b) = false ⊢ bxor true false = true
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;>
rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b ⊢ n % 2 = bif bodd n then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl
rw [← this]
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b ⊢ n % 2 = bif bodd (n % 2) then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this]
cases' mod_two_eq_zero_or_one n with h h
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this]
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case inl n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 0 ⊢ n % 2 = bif bodd (n % 2) then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;>
rw [h]
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case inr n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 1 ⊢ n % 2 = bif bodd (n % 2) then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;>
rw [h]
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case inl n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 0 ⊢ 0 = bif bodd 0 then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;>
rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
case inr n : ℕ this : bodd (n % 2) = bodd n x✝¹ : ∀ (b : Bool), (false && b) = false x✝ : ∀ (b : Bool), bxor b false = b h : n % 2 = 1 ⊢ 1 = bif bodd 1 then 1 else 0
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;>
rfl
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;>
Mathlib.Init.Data.Nat.Bitwise.87_0.OFUBkIQvV236FCW
theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0
Mathlib_Init_Data_Nat_Bitwise
n : ℕ ⊢ div2 (succ n) = bif bodd n then succ (div2 n) else div2 n
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by
simp only [bodd, boddDiv2, div2]
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
n : ℕ ⊢ (match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (boddDiv2 n).fst then succ (boddDiv2 n).snd else (boddDiv2 n).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2]
cases' boddDiv2 n with fst snd
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2]
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
case mk n : ℕ fst : Bool snd : ℕ ⊢ (match (fst, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (fst, snd).fst then succ (fst, snd).snd else (fst, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd
cases fst
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
case mk.false n snd : ℕ ⊢ (match (false, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd case mk.true n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst
case mk.false => simp
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
n snd : ℕ ⊢ (match (false, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst
case mk.false => simp
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
n snd : ℕ ⊢ (match (false, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (false, snd).fst then succ (false, snd).snd else (false, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false =>
simp
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false =>
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
case mk.true n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp
case mk.true => simp
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp
case mk.true => simp
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
n snd : ℕ ⊢ (match (true, snd) with | (false, m) => (true, m) | (true, m) => (false, succ m)).snd = bif (true, snd).fst then succ (true, snd).snd else (true, snd).snd
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp case mk.true =>
simp
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp case mk.true =>
Mathlib.Init.Data.Nat.Bitwise.115_0.OFUBkIQvV236FCW
@[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n)
Mathlib_Init_Data_Nat_Bitwise
n : ℕ ⊢ (bif bodd (succ n) then 1 else 0) + 2 * div2 (succ n) = succ n
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import Mathlib.Init.Data.Nat.Lemmas import Init.WFTactics import Mathlib.Data.Bool.Basic import Mathlib.Init.Data.Bool.Lemmas import Mathlib.Init.ZeroOne import Mathlib.Tactic.Cases import Mathlib.Tactic.Says #align_import init.data.nat.bitwise from "leanprover-community/lean"@"53e8520d8964c7632989880372d91ba0cecbaf00" /-! # Lemmas about bitwise operations on natural numbers. Possibly only of archaeological significance. -/ set_option autoImplicit true universe u -- Once we're in the `Nat` namespace, `xor` will inconveniently resolve to `Nat.xor`. /-- `bxor` denotes the `xor` function i.e. the exclusive-or function on type `Bool`. -/ local notation "bxor" => _root_.xor namespace Nat set_option linter.deprecated false /-- `boddDiv2 n` returns a 2-tuple of type `(Bool,Nat)` where the `Bool` value indicates whether `n` is odd or not and the `Nat` value returns `⌊n/2⌋` -/ def boddDiv2 : ℕ → Bool × ℕ | 0 => (false, 0) | succ n => match boddDiv2 n with | (false, m) => (true, m) | (true, m) => (false, succ m) #align nat.bodd_div2 Nat.boddDiv2 /-- `div2 n = ⌊n/2⌋` the greatest integer smaller than `n/2`-/ def div2 (n : ℕ) : ℕ := (boddDiv2 n).2 #align nat.div2 Nat.div2 /-- `bodd n` returns `true` if `n` is odd-/ def bodd (n : ℕ) : Bool := (boddDiv2 n).1 #align nat.bodd Nat.bodd @[simp] theorem bodd_zero : bodd 0 = false := rfl #align nat.bodd_zero Nat.bodd_zero theorem bodd_one : bodd 1 = true := rfl #align nat.bodd_one Nat.bodd_one theorem bodd_two : bodd 2 = false := rfl #align nat.bodd_two Nat.bodd_two @[simp] theorem bodd_succ (n : ℕ) : bodd (succ n) = not (bodd n) := by simp only [bodd, boddDiv2] let ⟨b,m⟩ := boddDiv2 n cases b <;> rfl #align nat.bodd_succ Nat.bodd_succ @[simp] theorem bodd_add (m n : ℕ) : bodd (m + n) = bxor (bodd m) (bodd n) := by induction n <;> simp_all [add_succ, Bool.xor_not] #align nat.bodd_add Nat.bodd_add @[simp] theorem bodd_mul (m n : ℕ) : bodd (m * n) = (bodd m && bodd n) := by induction' n with n IH · simp · simp [mul_succ, IH] cases bodd m <;> cases bodd n <;> rfl #align nat.bodd_mul Nat.bodd_mul theorem mod_two_of_bodd (n : ℕ) : n % 2 = cond (bodd n) 1 0 := by have := congr_arg bodd (mod_add_div n 2) simp? [not] at this says simp only [bodd_add, bodd_mul, bodd_succ, not, bodd_zero, Bool.false_and, Bool.xor_false] at this have _ : ∀ b, and false b = false := by intro b cases b <;> rfl have _ : ∀ b, bxor b false = b := by intro b cases b <;> rfl rw [← this] cases' mod_two_eq_zero_or_one n with h h <;> rw [h] <;> rfl #align nat.mod_two_of_bodd Nat.mod_two_of_bodd @[simp] theorem div2_zero : div2 0 = 0 := rfl #align nat.div2_zero Nat.div2_zero theorem div2_one : div2 1 = 0 := rfl #align nat.div2_one Nat.div2_one theorem div2_two : div2 2 = 1 := rfl #align nat.div2_two Nat.div2_two @[simp] theorem div2_succ (n : ℕ) : div2 (succ n) = cond (bodd n) (succ (div2 n)) (div2 n) := by simp only [bodd, boddDiv2, div2] cases' boddDiv2 n with fst snd cases fst case mk.false => simp case mk.true => simp #align nat.div2_succ Nat.div2_succ attribute [local simp] Nat.add_comm Nat.add_assoc Nat.add_left_comm Nat.mul_comm Nat.mul_assoc theorem bodd_add_div2 : ∀ n, cond (bodd n) 1 0 + 2 * div2 n = n | 0 => rfl | succ n => by
simp only [bodd_succ, Bool.cond_not, div2_succ, Nat.mul_comm]
theorem bodd_add_div2 : ∀ n, cond (bodd n) 1 0 + 2 * div2 n = n | 0 => rfl | succ n => by
Mathlib.Init.Data.Nat.Bitwise.128_0.OFUBkIQvV236FCW
theorem bodd_add_div2 : ∀ n, cond (bodd n) 1 0 + 2 * div2 n = n | 0 => rfl | succ n => by simp only [bodd_succ, Bool.cond_not, div2_succ, Nat.mul_comm] refine' Eq.trans _ (congr_arg succ (bodd_add_div2 n)) cases bodd n <;> simp [cond, not] · rw [Nat.add_comm, Nat.add_succ] · rw [succ_mul, Nat.add_comm 1, Nat.add_succ]
Mathlib_Init_Data_Nat_Bitwise