state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case mpr α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ (∃ i, (Set.Finite i.1 ∧ ∀ i_1 ∈ i.1, p i_1 (i.2 i_1)) ∧ ⋂ i_1 ∈ i.1, s i_1 (i.2 i_1) ⊆ t) → t ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ ·
rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩
theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ ·
Mathlib.Order.Filter.Bases.502_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case mpr.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ι) → ι' i hsub : ⋂ i ∈ (I, f).1, s i ((I, f).2 i) ⊆ t hI₁ : Set.Finite (I, f).1 hI₂ : ∀ i ∈ (I, f).1, p i ((I, f).2 i) ⊢ t ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩
refine' mem_of_superset _ hsub
theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩
Mathlib.Order.Filter.Bases.502_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case mpr.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ι) → ι' i hsub : ⋂ i ∈ (I, f).1, s i ((I, f).2 i) ⊆ t hI₁ : Set.Finite (I, f).1 hI₂ : ∀ i ∈ (I, f).1, p i ((I, f).2 i) ⊢ ⋂ i ∈ (I, f).1, s i ((I, f).2 i) ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub
exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi
theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub
Mathlib.Order.Filter.Bases.502_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) ⊢ HasBasis (⨅ i, l i) (fun If => Set.Finite If.fst ∧ ∀ (i : ↑If.fst), p (↑i) (Sigma.snd If i)) fun If => ⋂ i, s (↑i) (Sigma.snd If i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by
refine' ⟨fun t => ⟨fun ht => _, _⟩⟩
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ht : t ∈ ⨅ i, l i ⊢ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ i_1, s (↑i_1) (Sigma.snd i i_1) ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ ·
rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ ·
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case refine'_1.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ht : t ∈ ⨅ i, l i I : Set ι f : (i : ι) → ι' i hsub : ⋂ i ∈ (I, f).1, s i ((I, f).2 i) ⊆ t hI : Set.Finite (I, f).1 hf : ∀ i ∈ (I, f).1, p i ((I, f).2 i) ⊢ ∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ i_1, s (↑i_1) (Sigma.snd i i_1) ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ (∃ i, (Set.Finite i.fst ∧ ∀ (i_1 : ↑i.fst), p (↑i_1) (Sigma.snd i i_1)) ∧ ⋂ i_1, s (↑i_1) (Sigma.snd i i_1) ⊆ t) → t ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ ·
rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ ·
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case refine'_2.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ↑I) → ι' ↑i hsub : ⋂ i, s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t hI : Set.Finite { fst := I, snd := f }.fst hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i) ⊢ t ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
refine' mem_of_superset _ hsub
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case refine'_2.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ↑I) → ι' ↑i hsub : ⋂ i, s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t hI : Set.Finite { fst := I, snd := f }.fst hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i) ⊢ ⋂ i, s (↑i) (Sigma.snd { fst := I, snd := f } i) ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub
cases hI.nonempty_fintype
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
case refine'_2.intro.mk.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α I : Set ι f : (i : ↑I) → ι' ↑i hsub : ⋂ i, s (↑i) (Sigma.snd { fst := I, snd := f } i) ⊆ t hI : Set.Finite { fst := I, snd := f }.fst hf : ∀ (i : ↑{ fst := I, snd := f }.fst), p (↑i) (Sigma.snd { fst := I, snd := f } i) val✝ : Fintype ↑{ fst := I, snd := f }.fst ⊢ ⋂ i, s (↑i) (Sigma.snd { fst := I, snd := f } i) ∈ ⨅ i, l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype
exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype
Mathlib.Order.Filter.Bases.518_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l ⊢ HasBasis (⨅ i, l i) (fun ii' => p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
refine' ⟨fun t => _⟩
theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
Mathlib.Order.Filter.Bases.532_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ t ∈ ⨅ i, l i ↔ ∃ i, p i.fst i.snd ∧ s i.fst i.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
rw [mem_iInf_of_directed h, Sigma.exists]
theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
Mathlib.Order.Filter.Bases.532_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ (∃ i, t ∈ l i) ↔ ∃ a b, p { fst := a, snd := b }.fst { fst := a, snd := b }.snd ∧ s { fst := a, snd := b }.fst { fst := a, snd := b }.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists]
exact exists_congr fun i => (hl i).mem_iff
theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists]
Mathlib.Order.Filter.Bases.532_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l ⊢ HasBasis (⨅ i, l i) (fun ii' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
refine' ⟨fun t => _⟩
theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
Mathlib.Order.Filter.Bases.541_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ t ∈ ⨅ i, l i ↔ ∃ i, p i.1 i.2 ∧ s i.1 i.2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
rw [mem_iInf_of_directed h, Prod.exists]
theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
Mathlib.Order.Filter.Bases.541_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 inst✝ : Nonempty ι l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) h : Directed (fun x x_1 => x ≥ x_1) l t : Set α ⊢ (∃ i, t ∈ l i) ↔ ∃ a b, p (a, b).1 (a, b).2 ∧ s (a, b).1 (a, b).2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists]
exact exists_congr fun i => (hl i).mem_iff
theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists]
Mathlib.Order.Filter.Bases.541_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom ⊢ HasBasis (⨅ i ∈ dom, l i) (fun ii' => ii'.fst ∈ dom ∧ p ii'.fst ii'.snd) fun ii' => s ii'.fst ii'.snd
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
refine' ⟨fun t => _⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ t ∈ ⨅ i ∈ dom, l i ↔ ∃ i, (i.fst ∈ dom ∧ p i.fst i.snd) ∧ s i.fst i.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
rw [mem_biInf_of_directed h hdom, Sigma.exists]
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ (∃ i ∈ dom, t ∈ l i) ↔ ∃ a b, ({ fst := a, snd := b }.fst ∈ dom ∧ p { fst := a, snd := b }.fst { fst := a, snd := b }.snd) ∧ s { fst := a, snd := b }.fst { fst := a, snd := b }.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists]
refine' exists_congr fun i => ⟨_, _⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists]
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ i ∈ dom ∧ t ∈ l i → ∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ ·
rintro ⟨hi, hti⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ ·
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i ⊢ ∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩
rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_1.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i b : ι' i hb : p i b hbt : s i b ⊆ t ⊢ ∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
exact ⟨b, ⟨hi, hb⟩, hbt⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ (∃ b, ({ fst := i, snd := b }.fst ∈ dom ∧ p { fst := i, snd := b }.fst { fst := i, snd := b }.snd) ∧ s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t) → i ∈ dom ∧ t ∈ l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ ·
rintro ⟨b, ⟨hi, hb⟩, hibt⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ ·
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : ι → Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : (i : ι) → ι' i → Set α p : (i : ι) → ι' i → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι b : ι' i hibt : s { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊆ t hi : { fst := i, snd := b }.fst ∈ dom hb : p { fst := i, snd := b }.fst { fst := i, snd := b }.snd ⊢ i ∈ dom ∧ t ∈ l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩
exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩
Mathlib.Order.Filter.Bases.550_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom ⊢ HasBasis (⨅ i ∈ dom, l i) (fun ii' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
refine' ⟨fun t => _⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ t ∈ ⨅ i ∈ dom, l i ↔ ∃ i, (i.1 ∈ dom ∧ p i.1 i.2) ∧ s i.1 i.2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
rw [mem_biInf_of_directed h hdom, Prod.exists]
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α ⊢ (∃ i ∈ dom, t ∈ l i) ↔ ∃ a b, ((a, b).1 ∈ dom ∧ p (a, b).1 (a, b).2) ∧ s (a, b).1 (a, b).2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists]
refine' exists_congr fun i => ⟨_, _⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists]
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ i ∈ dom ∧ t ∈ l i → ∃ b, ((i, b).1 ∈ dom ∧ p (i, b).1 (i, b).2) ∧ s (i, b).1 (i, b).2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ ·
rintro ⟨hi, hti⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ ·
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i ⊢ ∃ b, ((i, b).1 ∈ dom ∧ p (i, b).1 (i, b).2) ∧ s (i, b).1 (i, b).2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩
rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_1.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι hi : i ∈ dom hti : t ∈ l i b : ι' hb : p i b hbt : s i b ⊆ t ⊢ ∃ b, ((i, b).1 ∈ dom ∧ p (i, b).1 (i, b).2) ∧ s (i, b).1 (i, b).2 ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
exact ⟨b, ⟨hi, hb⟩, hbt⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι ⊢ (∃ b, ((i, b).1 ∈ dom ∧ p (i, b).1 (i, b).2) ∧ s (i, b).1 (i, b).2 ⊆ t) → i ∈ dom ∧ t ∈ l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ ·
rintro ⟨b, ⟨hi, hb⟩, hibt⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ ·
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
case refine'_2.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i✝ : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Type u_6 ι' : Type u_7 dom : Set ι hdom : Set.Nonempty dom l : ι → Filter α s : ι → ι' → Set α p : ι → ι' → Prop hl : ∀ i ∈ dom, HasBasis (l i) (p i) (s i) h : DirectedOn (l ⁻¹'o GE.ge) dom t : Set α i : ι b : ι' hibt : s (i, b).1 (i, b).2 ⊆ t hi : (i, b).1 ∈ dom hb : p (i, b).1 (i, b).2 ⊢ i ∈ dom ∧ t ∈ l i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩
exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩
Mathlib.Order.Filter.Bases.565_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' t U : Set α ⊢ U ∈ 𝓟 t ↔ ∃ i, True ∧ t ⊆ U
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by
simp
theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by
Mathlib.Order.Filter.Bases.580_0.YdUKAcRZtFgMABD
theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' x : α ⊢ HasBasis (pure x) (fun x => True) fun x_1 => {x}
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by
simp only [← principal_singleton, hasBasis_principal]
theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by
Mathlib.Order.Filter.Bases.584_0.YdUKAcRZtFgMABD
theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x}
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ ∀ (t : Set α), t ∈ l ⊔ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∪ s' i.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by
intro t
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by
Mathlib.Order.Filter.Bases.589_0.YdUKAcRZtFgMABD
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ t ∈ l ⊔ l' ↔ ∃ i, (p i.fst ∧ p' i.snd) ∧ s i.fst ∪ s' i.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t
simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left]
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t
Mathlib.Order.Filter.Bases.589_0.YdUKAcRZtFgMABD
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' t : Set α ⊢ (∃ x x_1, (p x ∧ s x ⊆ t) ∧ p' x_1 ∧ s' x_1 ⊆ t) ↔ ∃ a b, (p a ∧ p' b) ∧ s a ⊆ t ∧ s' b ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left]
simp only [and_assoc, and_left_comm]
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left]
Mathlib.Order.Filter.Bases.589_0.YdUKAcRZtFgMABD
theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι'✝ : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι'✝ → Prop s' : ι'✝ → Set α i' : ι'✝ ι : Sort u_6 ι' : ι → Type u_7 l : ι → Filter α p : (i : ι) → ι' i → Prop s : (i : ι) → ι' i → Set α hl : ∀ (i : ι), HasBasis (l i) (p i) (s i) t : Set α ⊢ t ∈ ⨆ i, l i ↔ ∃ i, (∀ (i_1 : ι), p i_1 (i i_1)) ∧ ⋃ i_1, s i_1 (i i_1) ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by
simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup]
theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by
Mathlib.Order.Filter.Bases.604_0.YdUKAcRZtFgMABD
theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s t u : Set α ⊢ u ∈ l ⊔ 𝓟 t ↔ ∃ i, p i ∧ s i ∪ t ⊆ u
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by
simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]
theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by
Mathlib.Order.Filter.Bases.612_0.YdUKAcRZtFgMABD
theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s x : α ⊢ HasBasis (l ⊔ pure x) p fun i => s i ∪ {x}
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by
simp only [← principal_singleton, hl.sup_principal]
theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by
Mathlib.Order.Filter.Bases.619_0.YdUKAcRZtFgMABD
theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x}
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s'✝ : ι' → Set α i' : ι' hl : HasBasis l p s s' t : Set α ⊢ t ∈ l ⊓ 𝓟 s' ↔ ∃ i, p i ∧ s i ∩ s' ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by
simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]
theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by
Mathlib.Order.Filter.Bases.624_0.YdUKAcRZtFgMABD
theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s'
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s'✝ : ι' → Set α i' : ι' hl : HasBasis l p s s' : Set α ⊢ HasBasis (𝓟 s' ⊓ l) p fun i => s' ∩ s i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by
simpa only [inf_comm, inter_comm] using hl.inf_principal s'
theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by
Mathlib.Order.Filter.Bases.630_0.YdUKAcRZtFgMABD
theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ (∀ {i : PProd ι ι'}, p i.fst ∧ p' i.snd → Set.Nonempty (s i.fst ∩ s' i.snd)) ↔ ∀ ⦃i : ι⦄, p i → ∀ ⦃i' : ι'⦄, p' i' → Set.Nonempty (s i ∩ s' i')
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by
simp [@forall_swap _ ι']
theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by
Mathlib.Order.Filter.Bases.635_0.YdUKAcRZtFgMABD
theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' hl : HasBasis l p s hl' : HasBasis l' p' s' ⊢ ¬Disjoint l l' ↔ ¬∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i')
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by
simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty]
theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by
Mathlib.Order.Filter.Bases.651_0.YdUKAcRZtFgMABD
theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i')
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_7 inst✝ : Finite I l : I → Filter α ι : I → Sort u_6 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α hd : Pairwise (Disjoint on l) h : ∀ (i : I), HasBasis (l i) (p i) (s i) ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by
rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩
theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by
Mathlib.Order.Filter.Bases.663_0.YdUKAcRZtFgMABD
theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
Mathlib_Order_Filter_Bases
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_7 inst✝ : Finite I l : I → Filter α ι : I → Sort u_6 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α hd✝ : Pairwise (Disjoint on l) h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : Pairwise (Disjoint on t) ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩
choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩
Mathlib.Order.Filter.Bases.663_0.YdUKAcRZtFgMABD
theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
Mathlib_Order_Filter_Bases
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_7 inst✝ : Finite I l : I → Filter α ι : I → Sort u_6 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α hd✝ : Pairwise (Disjoint on l) h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : Pairwise (Disjoint on t) ind : (i : I) → ι i hp : ∀ (i : I), p i (ind i) ht : ∀ (i : I), s i (ind i) ⊆ t i ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩
theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
Mathlib.Order.Filter.Bases.663_0.YdUKAcRZtFgMABD
theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i))
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd : PairwiseDisjoint S l hS : Set.Finite S h : ∀ (i : I), HasBasis (l i) (p i) (s i) ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by
rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by
Mathlib.Order.Filter.Bases.672_0.YdUKAcRZtFgMABD
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i)
Mathlib_Order_Filter_Bases
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd✝ : PairwiseDisjoint S l hS : Set.Finite S h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : PairwiseDisjoint S t ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩
choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩
Mathlib.Order.Filter.Bases.672_0.YdUKAcRZtFgMABD
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i)
Mathlib_Order_Filter_Bases
case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l✝ l' : Filter α p✝ : ι✝ → Prop s✝ : ι✝ → Set α t✝ : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' I : Type u_6 l : I → Filter α ι : I → Sort u_7 p : (i : I) → ι i → Prop s : (i : I) → ι i → Set α S : Set I hd✝ : PairwiseDisjoint S l hS : Set.Finite S h : ∀ (i : I), HasBasis (l i) (p i) (s i) t : I → Set α htl : ∀ (i : I), t i ∈ l i hd : PairwiseDisjoint S t ind : (i : I) → ι i hp : ∀ (i : I), p i (ind i) ht : ∀ (i : I), s i (ind i) ⊆ t i ⊢ ∃ ind, (∀ (i : I), p i (ind i)) ∧ PairwiseDisjoint S fun i => s i (ind i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
exact ⟨ind, hp, hd.mono ht⟩
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i)
Mathlib.Order.Filter.Bases.672_0.YdUKAcRZtFgMABD
theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by
refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff)
theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by
Mathlib.Order.Filter.Bases.690_0.YdUKAcRZtFgMABD
theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ (∀ U ∈ f, Set.Nonempty (U ∩ sᶜ)) ↔ s ∉ f
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff)
exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩
theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff)
Mathlib.Order.Filter.Bases.690_0.YdUKAcRZtFgMABD
theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α h : ∀ U ∈ f, Set.Nonempty (U ∩ sᶜ) hs : s ∈ f ⊢ False
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by
simpa [Set.not_nonempty_empty] using h s hs
theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by
Mathlib.Order.Filter.Bases.690_0.YdUKAcRZtFgMABD
theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ Disjoint f (𝓟 s) ↔ sᶜ ∈ f
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by
rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff]
@[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by
Mathlib.Order.Filter.Bases.701_0.YdUKAcRZtFgMABD
@[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : Filter α s : Set α ⊢ Disjoint (𝓟 s) f ↔ sᶜ ∈ f
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by
rw [disjoint_comm, disjoint_principal_right]
@[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by
Mathlib.Order.Filter.Bases.706_0.YdUKAcRZtFgMABD
@[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s t : Set α ⊢ Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by
rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal]
@[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by
Mathlib.Order.Filter.Bases.711_0.YdUKAcRZtFgMABD
@[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' x y : α ⊢ Disjoint (pure x) (pure y) ↔ x ≠ y
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by
simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton]
@[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by
Mathlib.Order.Filter.Bases.719_0.YdUKAcRZtFgMABD
@[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' l₁ l₂ : Filter α ⊢ (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by
simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint]
@[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by
Mathlib.Order.Filter.Bases.724_0.YdUKAcRZtFgMABD
@[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s ⊢ Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l'
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by
simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff]
theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by
Mathlib.Order.Filter.Bases.730_0.YdUKAcRZtFgMABD
theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l'
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in f, p x) → ∃ᶠ (x : α) in g, p x
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by
simp only [inf_neBot_iff, frequently_iff, and_comm]
theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by
Mathlib.Order.Filter.Bases.746_0.YdUKAcRZtFgMABD
theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ (∀ ⦃s : Set α⦄, s ∈ f → ∀ ⦃s' : Set α⦄, s' ∈ g → Set.Nonempty (s ∩ s')) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in f, p x) → ∀ {U : Set α}, U ∈ g → ∃ x, p x ∧ x ∈ U
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm];
rfl
theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm];
Mathlib.Order.Filter.Bases.746_0.YdUKAcRZtFgMABD
theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in g, p x) → ∃ᶠ (x : α) in f, p x
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by
rw [inf_comm]
theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by
Mathlib.Order.Filter.Bases.751_0.YdUKAcRZtFgMABD
theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f g : Filter α ⊢ NeBot (g ⊓ f) ↔ ∀ {p : α → Prop}, (∀ᶠ (x : α) in g, p x) → ∃ᶠ (x : α) in f, p x
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm]
exact inf_neBot_iff_frequently_left
theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm]
Mathlib.Order.Filter.Bases.751_0.YdUKAcRZtFgMABD
theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s x✝ : Set α ⊢ x✝ ∈ l ↔ ∃ i, p i ∧ x✝ ∈ 𝓟 (s i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by
simp only [h.mem_iff, mem_principal, exists_prop]
theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by
Mathlib.Order.Filter.Bases.757_0.YdUKAcRZtFgMABD
theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l (fun x => True) s ⊢ l = ⨅ i, 𝓟 (s i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by
simpa only [iInf_true] using h.eq_biInf
theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by
Mathlib.Order.Filter.Bases.761_0.YdUKAcRZtFgMABD
theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : ι → Set α h : Directed (fun x x_1 => x ≥ x_1) s inst✝ : Nonempty ι t : Set α ⊢ t ∈ ⨅ i, 𝓟 (s i) ↔ ∃ i, True ∧ s i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by
simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t
theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by
Mathlib.Order.Filter.Bases.765_0.YdUKAcRZtFgMABD
theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' ι : Type u_6 s : ι → Set α ⊢ HasBasis (⨅ i, 𝓟 (s i)) (fun t => Set.Finite t) fun t => ⋂ i ∈ t, s i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by
refine' ⟨fun U => (mem_iInf_finite _).trans _⟩
/-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by
Mathlib.Order.Filter.Bases.771_0.YdUKAcRZtFgMABD
/-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι✝ : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι✝ → Prop s✝ : ι✝ → Set α t : Set α i : ι✝ p' : ι' → Prop s' : ι' → Set α i' : ι' ι : Type u_6 s : ι → Set α U : Set α ⊢ (∃ t, U ∈ ⨅ i ∈ t, 𝓟 (s i)) ↔ ∃ i, Set.Finite i ∧ ⋂ i_1 ∈ i, s i_1 ⊆ U
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩
simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe]
/-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩
Mathlib.Order.Filter.Bases.771_0.YdUKAcRZtFgMABD
/-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : DirectedOn (s ⁻¹'o fun x x_1 => x ≥ x_1) S ne : Set.Nonempty S t : Set α ⊢ t ∈ ⨅ i ∈ S, 𝓟 (s i) ↔ ∃ i ∈ S, s i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by
refine' mem_biInf_of_directed _ ne
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by
Mathlib.Order.Filter.Bases.780_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : DirectedOn (s ⁻¹'o fun x x_1 => x ≥ x_1) S ne : Set.Nonempty S t : Set α ⊢ DirectedOn ((fun i => 𝓟 (s i)) ⁻¹'o fun x x_1 => x ≥ x_1) S
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne
rw [directedOn_iff_directed, ← directed_comp] at h ⊢
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne
Mathlib.Order.Filter.Bases.780_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : Directed (fun x x_1 => x ≥ x_1) (s ∘ Subtype.val) ne : Set.Nonempty S t : Set α ⊢ Directed (fun x x_1 => x ≥ x_1) ((fun i => 𝓟 (s i)) ∘ Subtype.val)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢
refine' h.mono_comp _
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢
Mathlib.Order.Filter.Bases.780_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s✝ : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' s : β → Set α S : Set β h : Directed (fun x x_1 => x ≥ x_1) (s ∘ Subtype.val) ne : Set.Nonempty S t : Set α ⊢ ∀ ⦃x y : Set α⦄, x ≥ y → 𝓟 x ≥ 𝓟 y
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _
exact fun _ _ => principal_mono.2
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _
Mathlib.Order.Filter.Bases.780_0.YdUKAcRZtFgMABD
theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : α → β hl : HasBasis l p s t : Set β ⊢ t ∈ Filter.map f l ↔ ∃ i, p i ∧ f '' s i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by
simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]
theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by
Mathlib.Order.Filter.Bases.795_0.YdUKAcRZtFgMABD
theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β ⊢ t ∈ Filter.comap f l ↔ ∃ i, p i ∧ f ⁻¹' s i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by
simp only [mem_comap', hl.mem_iff]
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by
Mathlib.Order.Filter.Bases.799_0.YdUKAcRZtFgMABD
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β ⊢ (∃ i, p i ∧ s i ⊆ {y | ∀ ⦃x : β⦄, f x = y → x ∈ t}) ↔ ∃ i, p i ∧ f ⁻¹' s i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff]
refine exists_congr (fun i => Iff.rfl.and ?_)
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff]
Mathlib.Order.Filter.Bases.799_0.YdUKAcRZtFgMABD
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β i : ι ⊢ s i ⊆ {y | ∀ ⦃x : β⦄, f x = y → x ∈ t} ↔ f ⁻¹' s i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_)
exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_)
Mathlib.Order.Filter.Bases.799_0.YdUKAcRZtFgMABD
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t✝ : Set α i✝ : ι p' : ι' → Prop s' : ι' → Set α i' : ι' f : β → α hl : HasBasis l p s t : Set β i : ι h : f ⁻¹' s i ⊆ t y : α hy : y ∈ s i x : β hx : f x = y ⊢ x ∈ f ⁻¹' s i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by
rwa [mem_preimage, hx]
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by
Mathlib.Order.Filter.Bases.799_0.YdUKAcRZtFgMABD
theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s x : α ⊢ (∀ t ∈ l, x ∈ t) ↔ ∀ (i : ι), p i → x ∈ s i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by
simp only [h.mem_iff, exists_imp, and_imp]
theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by
Mathlib.Order.Filter.Bases.812_0.YdUKAcRZtFgMABD
theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 l l' : Filter α p : ι → Prop s : ι → Set α t : Set α i : ι p' : ι' → Prop s' : ι' → Set α i' : ι' h : HasBasis l p s x : α ⊢ (∀ (t : Set α) (x_1 : ι), p x_1 → s x_1 ⊆ t → x ∈ t) ↔ ∀ (i : ι), p i → x ∈ s i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp]
exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩
theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp]
Mathlib.Order.Filter.Bases.812_0.YdUKAcRZtFgMABD
theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hla : HasBasis la pa sa ⊢ Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by
simp only [Tendsto, (hla.map f).le_iff, image_subset_iff]
theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by
Mathlib.Order.Filter.Bases.868_0.YdUKAcRZtFgMABD
theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hla : HasBasis la pa sa ⊢ (∀ t ∈ lb, ∃ i, pa i ∧ sa i ⊆ f ⁻¹' t) ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff]
rfl
theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff]
Mathlib.Order.Filter.Bases.868_0.YdUKAcRZtFgMABD
theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hlb : HasBasis lb pb sb ⊢ Tendsto f la lb ↔ ∀ (i : ι'), pb i → ∀ᶠ (x : α) in la, f x ∈ sb i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by
simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually]
theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by
Mathlib.Order.Filter.Bases.874_0.YdUKAcRZtFgMABD
theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hla : HasBasis la pa sa hlb : HasBasis lb pb sb ⊢ Tendsto f la lb ↔ ∀ (ib : ι'), pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by
simp [hlb.tendsto_right_iff, hla.eventually_iff]
theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by
Mathlib.Order.Filter.Bases.880_0.YdUKAcRZtFgMABD
theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j ⊢ HasBasis (la ×ˢ lb) p fun i => sa i ×ˢ sb i
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by
simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff]
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j ⊢ ∀ (t : Set (α × β)), (∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t) ↔ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff]
refine' fun t => ⟨_, _⟩
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff]
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) ⊢ (∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t) → ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ ·
rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ ·
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
case refine'_1.intro.mk.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) i j : ι hsub : sa i ×ˢ sb j ⊆ t hi : p { fst := i, snd := j }.fst hj : p { fst := i, snd := j }.snd ⊢ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩
rcases h_dir hi hj with ⟨k, hk, ki, kj⟩
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
case refine'_1.intro.mk.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) i j : ι hsub : sa i ×ˢ sb j ⊆ t hi : p { fst := i, snd := j }.fst hj : p { fst := i, snd := j }.snd k : ι hk : p k ki : sa k ⊆ sa { fst := i, snd := j }.fst kj : sb k ⊆ sb { fst := i, snd := j }.snd ⊢ ∃ i, p i ∧ sa i ×ˢ sb i ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩
exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) ⊢ (∃ i, p i ∧ sa i ×ˢ sb i ⊆ t) → ∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ ·
rintro ⟨i, hi, h⟩
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ ·
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
case refine'_2.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb✝ : ι' → Set β f : α → β p : ι → Prop sb : ι → Set β hla : HasBasis la p sa hlb : HasBasis lb p sb h_dir : ∀ {i j : ι}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j t : Set (α × β) i : ι hi : p i h : sa i ×ˢ sb i ⊆ t ⊢ ∃ i, (p i.fst ∧ p i.snd) ∧ sa i.fst ×ˢ sb i.snd ⊆ t
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩
exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩
Mathlib.Order.Filter.Bases.914_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β hl : HasBasis la pa sa i j : ι hi : pa i hj : pa j ⊢ ∃ k, pa k ∧ sa k ⊆ sa i ∧ sa k ⊆ sa j
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by
simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj))
theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by
Mathlib.Order.Filter.Bases.942_0.YdUKAcRZtFgMABD
theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 la : Filter α pa : ι → Prop sa : ι → Set α lb : Filter β pb : ι' → Prop sb : ι' → Set β f : α → β r : α → α → Prop ⊢ (∃ t ∈ la, t ×ˢ t ⊆ {x | (fun x => r x.1 x.2) x}) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by
simp only [prod_subset_iff, mem_setOf_eq]
lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by
Mathlib.Order.Filter.Bases.953_0.YdUKAcRZtFgMABD
lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 π : α → Type u_6 π' : β → Type u_7 f : α → β hf : Function.Injective f g : (a : α) → π a → π' (f a) a : α l : Filter (π' (f a)) ⊢ map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by
refine' (((basis_sets _).comap _).map _).eq_of_same_basis _
theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by
Mathlib.Order.Filter.Bases.972_0.YdUKAcRZtFgMABD
theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 π : α → Type u_6 π' : β → Type u_7 f : α → β hf : Function.Injective f g : (a : α) → π a → π' (f a) a : α l : Filter (π' (f a)) ⊢ HasBasis (comap (Sigma.map f g) (map (Sigma.mk (f a)) l)) (fun s => s ∈ l) fun i => Sigma.mk a '' (g a ⁻¹' id i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _
convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g)
theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _
Mathlib.Order.Filter.Bases.972_0.YdUKAcRZtFgMABD
theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l)
Mathlib_Order_Filter_Bases
case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 π : α → Type u_6 π' : β → Type u_7 f : α → β hf : Function.Injective f g : (a : α) → π a → π' (f a) a : α l : Filter (π' (f a)) x✝ : Set (π' (f a)) ⊢ Sigma.mk a '' (g a ⁻¹' id x✝) = Sigma.map f g ⁻¹' (Sigma.mk (f a) '' id x✝)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g)
apply image_sigmaMk_preimage_sigmaMap hf
theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g)
Mathlib.Order.Filter.Bases.972_0.YdUKAcRZtFgMABD
theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l)
Mathlib_Order_Filter_Bases
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ∃ t, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g) apply image_sigmaMk_preimage_sigmaMap hf #align filter.map_sigma_mk_comap Filter.map_sigma_mk_comap end Filter end sort namespace Filter variable {α β γ ι : Type*} {ι' : Sort*} /-- `IsCountablyGenerated f` means `f = generate s` for some countable `s`. -/ class IsCountablyGenerated (f : Filter α) : Prop where /-- There exists a countable set that generates the filter. -/ out : ∃ s : Set (Set α), s.Countable ∧ f = generate s #align filter.is_countably_generated Filter.IsCountablyGenerated /-- `IsCountableBasis p s` means the image of `s` bounded by `p` is a countable filter basis. -/ structure IsCountableBasis (p : ι → Prop) (s : ι → Set α) extends IsBasis p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.is_countable_basis Filter.IsCountableBasis /-- We say that a filter `l` has a countable basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`, and the set defined by `p` is countable. -/ structure HasCountableBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) extends HasBasis l p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.has_countable_basis Filter.HasCountableBasis /-- A countable filter basis `B` on a type `α` is a nonempty countable collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure CountableFilterBasis (α : Type*) extends FilterBasis α where /-- The set of sets of the filter basis is countable. -/ countable : sets.Countable #align filter.countable_filter_basis Filter.CountableFilterBasis -- For illustration purposes, the countable filter basis defining `(atTop : Filter ℕ)` instance Nat.inhabitedCountableFilterBasis : Inhabited (CountableFilterBasis ℕ) := ⟨⟨default, countable_range fun n => Ici n⟩⟩ #align filter.nat.inhabited_countable_filter_basis Filter.Nat.inhabitedCountableFilterBasis theorem HasCountableBasis.isCountablyGenerated {f : Filter α} {p : ι → Prop} {s : ι → Set α} (h : f.HasCountableBasis p s) : f.IsCountablyGenerated := ⟨⟨{ t | ∃ i, p i ∧ s i = t }, h.countable.image s, h.toHasBasis.eq_generate⟩⟩ #align filter.has_countable_basis.is_countably_generated Filter.HasCountableBasis.isCountablyGenerated theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by
use fun n => ⋂ m ≤ n, s m
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by
Mathlib.Order.Filter.Bases.1027_0.YdUKAcRZtFgMABD
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i)
Mathlib_Order_Filter_Bases
case h α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ (Antitone fun n => ⋂ m, ⋂ (_ : m ≤ n), s m) ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (⋂ m, ⋂ (_ : m ≤ i), s m)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g) apply image_sigmaMk_preimage_sigmaMap hf #align filter.map_sigma_mk_comap Filter.map_sigma_mk_comap end Filter end sort namespace Filter variable {α β γ ι : Type*} {ι' : Sort*} /-- `IsCountablyGenerated f` means `f = generate s` for some countable `s`. -/ class IsCountablyGenerated (f : Filter α) : Prop where /-- There exists a countable set that generates the filter. -/ out : ∃ s : Set (Set α), s.Countable ∧ f = generate s #align filter.is_countably_generated Filter.IsCountablyGenerated /-- `IsCountableBasis p s` means the image of `s` bounded by `p` is a countable filter basis. -/ structure IsCountableBasis (p : ι → Prop) (s : ι → Set α) extends IsBasis p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.is_countable_basis Filter.IsCountableBasis /-- We say that a filter `l` has a countable basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`, and the set defined by `p` is countable. -/ structure HasCountableBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) extends HasBasis l p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.has_countable_basis Filter.HasCountableBasis /-- A countable filter basis `B` on a type `α` is a nonempty countable collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure CountableFilterBasis (α : Type*) extends FilterBasis α where /-- The set of sets of the filter basis is countable. -/ countable : sets.Countable #align filter.countable_filter_basis Filter.CountableFilterBasis -- For illustration purposes, the countable filter basis defining `(atTop : Filter ℕ)` instance Nat.inhabitedCountableFilterBasis : Inhabited (CountableFilterBasis ℕ) := ⟨⟨default, countable_range fun n => Ici n⟩⟩ #align filter.nat.inhabited_countable_filter_basis Filter.Nat.inhabitedCountableFilterBasis theorem HasCountableBasis.isCountablyGenerated {f : Filter α} {p : ι → Prop} {s : ι → Set α} (h : f.HasCountableBasis p s) : f.IsCountablyGenerated := ⟨⟨{ t | ∃ i, p i ∧ s i = t }, h.countable.image s, h.toHasBasis.eq_generate⟩⟩ #align filter.has_countable_basis.is_countably_generated Filter.HasCountableBasis.isCountablyGenerated theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m;
constructor
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m;
Mathlib.Order.Filter.Bases.1027_0.YdUKAcRZtFgMABD
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i)
Mathlib_Order_Filter_Bases
case h.left α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ Antitone fun n => ⋂ m, ⋂ (_ : m ≤ n), s m
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g) apply image_sigmaMk_preimage_sigmaMap hf #align filter.map_sigma_mk_comap Filter.map_sigma_mk_comap end Filter end sort namespace Filter variable {α β γ ι : Type*} {ι' : Sort*} /-- `IsCountablyGenerated f` means `f = generate s` for some countable `s`. -/ class IsCountablyGenerated (f : Filter α) : Prop where /-- There exists a countable set that generates the filter. -/ out : ∃ s : Set (Set α), s.Countable ∧ f = generate s #align filter.is_countably_generated Filter.IsCountablyGenerated /-- `IsCountableBasis p s` means the image of `s` bounded by `p` is a countable filter basis. -/ structure IsCountableBasis (p : ι → Prop) (s : ι → Set α) extends IsBasis p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.is_countable_basis Filter.IsCountableBasis /-- We say that a filter `l` has a countable basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`, and the set defined by `p` is countable. -/ structure HasCountableBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) extends HasBasis l p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.has_countable_basis Filter.HasCountableBasis /-- A countable filter basis `B` on a type `α` is a nonempty countable collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure CountableFilterBasis (α : Type*) extends FilterBasis α where /-- The set of sets of the filter basis is countable. -/ countable : sets.Countable #align filter.countable_filter_basis Filter.CountableFilterBasis -- For illustration purposes, the countable filter basis defining `(atTop : Filter ℕ)` instance Nat.inhabitedCountableFilterBasis : Inhabited (CountableFilterBasis ℕ) := ⟨⟨default, countable_range fun n => Ici n⟩⟩ #align filter.nat.inhabited_countable_filter_basis Filter.Nat.inhabitedCountableFilterBasis theorem HasCountableBasis.isCountablyGenerated {f : Filter α} {p : ι → Prop} {s : ι → Set α} (h : f.HasCountableBasis p s) : f.IsCountablyGenerated := ⟨⟨{ t | ∃ i, p i ∧ s i = t }, h.countable.image s, h.toHasBasis.eq_generate⟩⟩ #align filter.has_countable_basis.is_countably_generated Filter.HasCountableBasis.isCountablyGenerated theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m; constructor ·
exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m; constructor ·
Mathlib.Order.Filter.Bases.1027_0.YdUKAcRZtFgMABD
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i)
Mathlib_Order_Filter_Bases
case h.right α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (⋂ m, ⋂ (_ : m ≤ i), s m)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g) apply image_sigmaMk_preimage_sigmaMap hf #align filter.map_sigma_mk_comap Filter.map_sigma_mk_comap end Filter end sort namespace Filter variable {α β γ ι : Type*} {ι' : Sort*} /-- `IsCountablyGenerated f` means `f = generate s` for some countable `s`. -/ class IsCountablyGenerated (f : Filter α) : Prop where /-- There exists a countable set that generates the filter. -/ out : ∃ s : Set (Set α), s.Countable ∧ f = generate s #align filter.is_countably_generated Filter.IsCountablyGenerated /-- `IsCountableBasis p s` means the image of `s` bounded by `p` is a countable filter basis. -/ structure IsCountableBasis (p : ι → Prop) (s : ι → Set α) extends IsBasis p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.is_countable_basis Filter.IsCountableBasis /-- We say that a filter `l` has a countable basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`, and the set defined by `p` is countable. -/ structure HasCountableBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) extends HasBasis l p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.has_countable_basis Filter.HasCountableBasis /-- A countable filter basis `B` on a type `α` is a nonempty countable collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure CountableFilterBasis (α : Type*) extends FilterBasis α where /-- The set of sets of the filter basis is countable. -/ countable : sets.Countable #align filter.countable_filter_basis Filter.CountableFilterBasis -- For illustration purposes, the countable filter basis defining `(atTop : Filter ℕ)` instance Nat.inhabitedCountableFilterBasis : Inhabited (CountableFilterBasis ℕ) := ⟨⟨default, countable_range fun n => Ici n⟩⟩ #align filter.nat.inhabited_countable_filter_basis Filter.Nat.inhabitedCountableFilterBasis theorem HasCountableBasis.isCountablyGenerated {f : Filter α} {p : ι → Prop} {s : ι → Set α} (h : f.HasCountableBasis p s) : f.IsCountablyGenerated := ⟨⟨{ t | ∃ i, p i ∧ s i = t }, h.countable.image s, h.toHasBasis.eq_generate⟩⟩ #align filter.has_countable_basis.is_countably_generated Filter.HasCountableBasis.isCountablyGenerated theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m; constructor · exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl
apply le_antisymm
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m; constructor · exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl
Mathlib.Order.Filter.Bases.1027_0.YdUKAcRZtFgMABD
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i)
Mathlib_Order_Filter_Bases
case h.right.a α : Type u_1 β : Type u_2 γ : Type u_3 ι : Type u_4 ι' : Sort u_5 s : ℕ → Set α ⊢ ⨅ i, 𝓟 (s i) ≤ ⨅ i, 𝓟 (⋂ m, ⋂ (_ : m ≤ i), s m)
/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod #align_import order.filter.bases from "leanprover-community/mathlib"@"996b0ff959da753a555053a480f36e5f264d4207" /-! # Filter bases A filter basis `B : FilterBasis α` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. Compared to filters, filter bases do not require that any set containing an element of `B` belongs to `B`. A filter basis `B` can be used to construct `B.filter : Filter α` such that a set belongs to `B.filter` if and only if it contains an element of `B`. Given an indexing type `ι`, a predicate `p : ι → Prop`, and a map `s : ι → Set α`, the proposition `h : Filter.IsBasis p s` makes sure the range of `s` bounded by `p` (ie. `s '' setOf p`) defines a filter basis `h.filterBasis`. If one already has a filter `l` on `α`, `Filter.HasBasis l p s` (where `p : ι → Prop` and `s : ι → Set α` as above) means that a set belongs to `l` if and only if it contains some `s i` with `p i`. It implies `h : Filter.IsBasis p s`, and `l = h.filterBasis.filter`. The point of this definition is that checking statements involving elements of `l` often reduces to checking them on the basis elements. We define a function `HasBasis.index (h : Filter.HasBasis l p s) (t) (ht : t ∈ l)` that returns some index `i` such that `p i` and `s i ⊆ t`. This function can be useful to avoid manual destruction of `h.mem_iff.mpr ht` using `cases` or `let`. This file also introduces more restricted classes of bases, involving monotonicity or countability. In particular, for `l : Filter α`, `l.IsCountablyGenerated` means there is a countable set of sets which generates `s`. This is reformulated in term of bases, and consequences are derived. ## Main statements * `Filter.HasBasis.mem_iff`, `HasBasis.mem_of_superset`, `HasBasis.mem_of_mem` : restate `t ∈ f` in terms of a basis; * `Filter.basis_sets` : all sets of a filter form a basis; * `Filter.HasBasis.inf`, `Filter.HasBasis.inf_principal`, `Filter.HasBasis.prod`, `Filter.HasBasis.prod_self`, `Filter.HasBasis.map`, `Filter.HasBasis.comap` : combinators to construct filters of `l ⊓ l'`, `l ⊓ 𝓟 t`, `l ×ˢ l'`, `l ×ˢ l`, `l.map f`, `l.comap f` respectively; * `Filter.HasBasis.le_iff`, `Filter.HasBasis.ge_iff`, `Filter.HasBasis.le_basis_iff` : restate `l ≤ l'` in terms of bases. * `Filter.HasBasis.tendsto_right_iff`, `Filter.HasBasis.tendsto_left_iff`, `Filter.HasBasis.tendsto_iff` : restate `Tendsto f l l'` in terms of bases. * `isCountablyGenerated_iff_exists_antitone_basis` : proves a filter is countably generated if and only if it admits a basis parametrized by a decreasing sequence of sets indexed by `ℕ`. * `tendsto_iff_seq_tendsto` : an abstract version of "sequentially continuous implies continuous". ## Implementation notes As with `Set.iUnion`/`biUnion`/`Set.sUnion`, there are three different approaches to filter bases: * `Filter.HasBasis l s`, `s : Set (Set α)`; * `Filter.HasBasis l s`, `s : ι → Set α`; * `Filter.HasBasis l p s`, `p : ι → Prop`, `s : ι → Set α`. We use the latter one because, e.g., `𝓝 x` in an `EMetricSpace` or in a `MetricSpace` has a basis of this form. The other two can be emulated using `s = id` or `p = fun _ ↦ True`. With this approach sometimes one needs to `simp` the statement provided by the `Filter.HasBasis` machinery, e.g., `simp only [true_and]` or `simp only [forall_const]` can help with the case `p = fun _ ↦ True`. -/ set_option autoImplicit true open Set Filter open Filter Classical section sort variable {α β γ : Type*} {ι ι' : Sort*} /-- A filter basis `B` on a type `α` is a nonempty collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure FilterBasis (α : Type*) where /-- Sets of a filter basis. -/ sets : Set (Set α) /-- The set of filter basis sets is nonempty. -/ nonempty : sets.Nonempty /-- The set of filter basis sets is directed downwards. -/ inter_sets {x y} : x ∈ sets → y ∈ sets → ∃ z ∈ sets, z ⊆ x ∩ y #align filter_basis FilterBasis instance FilterBasis.nonempty_sets (B : FilterBasis α) : Nonempty B.sets := B.nonempty.to_subtype #align filter_basis.nonempty_sets FilterBasis.nonempty_sets -- porting note: this instance was reducible but it doesn't work the same way in Lean 4 /-- If `B` is a filter basis on `α`, and `U` a subset of `α` then we can write `U ∈ B` as on paper. -/ instance {α : Type*} : Membership (Set α) (FilterBasis α) := ⟨fun U B => U ∈ B.sets⟩ @[simp] theorem FilterBasis.mem_sets {s : Set α} {B : FilterBasis α} : s ∈ B.sets ↔ s ∈ B := Iff.rfl -- For illustration purposes, the filter basis defining `(atTop : Filter ℕ)` instance : Inhabited (FilterBasis ℕ) := ⟨{ sets := range Ici nonempty := ⟨Ici 0, mem_range_self 0⟩ inter_sets := by rintro _ _ ⟨n, rfl⟩ ⟨m, rfl⟩ exact ⟨Ici (max n m), mem_range_self _, Ici_inter_Ici.symm.subset⟩ }⟩ /-- View a filter as a filter basis. -/ def Filter.asBasis (f : Filter α) : FilterBasis α := ⟨f.sets, ⟨univ, univ_mem⟩, fun {x y} hx hy => ⟨x ∩ y, inter_mem hx hy, subset_rfl⟩⟩ #align filter.as_basis Filter.asBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- `is_basis p s` means the image of `s` bounded by `p` is a filter basis. -/ structure Filter.IsBasis (p : ι → Prop) (s : ι → Set α) : Prop where /-- There exists at least one `i` that satisfies `p`. -/ nonempty : ∃ i, p i /-- `s` is directed downwards on `i` such that `p i`. -/ inter : ∀ {i j}, p i → p j → ∃ k, p k ∧ s k ⊆ s i ∩ s j #align filter.is_basis Filter.IsBasis namespace Filter namespace IsBasis /-- Constructs a filter basis from an indexed family of sets satisfying `IsBasis`. -/ protected def filterBasis {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) : FilterBasis α where sets := { t | ∃ i, p i ∧ s i = t } nonempty := let ⟨i, hi⟩ := h.nonempty ⟨s i, ⟨i, hi, rfl⟩⟩ inter_sets := by rintro _ _ ⟨i, hi, rfl⟩ ⟨j, hj, rfl⟩ rcases h.inter hi hj with ⟨k, hk, hk'⟩ exact ⟨_, ⟨k, hk, rfl⟩, hk'⟩ #align filter.is_basis.filter_basis Filter.IsBasis.filterBasis variable {p : ι → Prop} {s : ι → Set α} (h : IsBasis p s) theorem mem_filterBasis_iff {U : Set α} : U ∈ h.filterBasis ↔ ∃ i, p i ∧ s i = U := Iff.rfl #align filter.is_basis.mem_filter_basis_iff Filter.IsBasis.mem_filterBasis_iff end IsBasis end Filter namespace FilterBasis /-- The filter associated to a filter basis. -/ protected def filter (B : FilterBasis α) : Filter α where sets := { s | ∃ t ∈ B, t ⊆ s } univ_sets := B.nonempty.imp <| fun s s_in => ⟨s_in, s.subset_univ⟩ sets_of_superset := fun ⟨s, s_in, h⟩ hxy => ⟨s, s_in, Set.Subset.trans h hxy⟩ inter_sets := fun ⟨_s, s_in, hs⟩ ⟨_t, t_in, ht⟩ => let ⟨u, u_in, u_sub⟩ := B.inter_sets s_in t_in ⟨u, u_in, u_sub.trans (inter_subset_inter hs ht)⟩ #align filter_basis.filter FilterBasis.filter theorem mem_filter_iff (B : FilterBasis α) {U : Set α} : U ∈ B.filter ↔ ∃ s ∈ B, s ⊆ U := Iff.rfl #align filter_basis.mem_filter_iff FilterBasis.mem_filter_iff theorem mem_filter_of_mem (B : FilterBasis α) {U : Set α} : U ∈ B → U ∈ B.filter := fun U_in => ⟨U, U_in, Subset.refl _⟩ #align filter_basis.mem_filter_of_mem FilterBasis.mem_filter_of_mem theorem eq_iInf_principal (B : FilterBasis α) : B.filter = ⨅ s : B.sets, 𝓟 s := by have : Directed (· ≥ ·) fun s : B.sets => 𝓟 (s : Set α) := by rintro ⟨U, U_in⟩ ⟨V, V_in⟩ rcases B.inter_sets U_in V_in with ⟨W, W_in, W_sub⟩ use ⟨W, W_in⟩ simp only [ge_iff_le, le_principal_iff, mem_principal, Subtype.coe_mk] exact subset_inter_iff.mp W_sub ext U simp [mem_filter_iff, mem_iInf_of_directed this] #align filter_basis.eq_infi_principal FilterBasis.eq_iInf_principal protected theorem generate (B : FilterBasis α) : generate B.sets = B.filter := by apply le_antisymm · intro U U_in rcases B.mem_filter_iff.mp U_in with ⟨V, V_in, h⟩ exact GenerateSets.superset (GenerateSets.basic V_in) h · rw [le_generate_iff] apply mem_filter_of_mem #align filter_basis.generate FilterBasis.generate end FilterBasis namespace Filter namespace IsBasis variable {p : ι → Prop} {s : ι → Set α} /-- Constructs a filter from an indexed family of sets satisfying `IsBasis`. -/ protected def filter (h : IsBasis p s) : Filter α := h.filterBasis.filter #align filter.is_basis.filter Filter.IsBasis.filter protected theorem mem_filter_iff (h : IsBasis p s) {U : Set α} : U ∈ h.filter ↔ ∃ i, p i ∧ s i ⊆ U := by simp only [IsBasis.filter, FilterBasis.mem_filter_iff, mem_filterBasis_iff, exists_exists_and_eq_and] #align filter.is_basis.mem_filter_iff Filter.IsBasis.mem_filter_iff theorem filter_eq_generate (h : IsBasis p s) : h.filter = generate { U | ∃ i, p i ∧ s i = U } := by erw [h.filterBasis.generate]; rfl #align filter.is_basis.filter_eq_generate Filter.IsBasis.filter_eq_generate end IsBasis -- porting note: was `protected` in Lean 3 but `protected` didn't work; removed /-- We say that a filter `l` has a basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`. -/ structure HasBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) : Prop where /-- A set `t` belongs to a filter `l` iff it includes an element of the basis. -/ mem_iff' : ∀ t : Set α, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t #align filter.has_basis Filter.HasBasis section SameType variable {l l' : Filter α} {p : ι → Prop} {s : ι → Set α} {t : Set α} {i : ι} {p' : ι' → Prop} {s' : ι' → Set α} {i' : ι'} theorem hasBasis_generate (s : Set (Set α)) : (generate s).HasBasis (fun t => Set.Finite t ∧ t ⊆ s) fun t => ⋂₀ t := ⟨fun U => by simp only [mem_generate_iff, exists_prop, and_assoc, and_left_comm]⟩ #align filter.has_basis_generate Filter.hasBasis_generate /-- The smallest filter basis containing a given collection of sets. -/ def FilterBasis.ofSets (s : Set (Set α)) : FilterBasis α where sets := sInter '' { t | Set.Finite t ∧ t ⊆ s } nonempty := ⟨univ, ∅, ⟨⟨finite_empty, empty_subset s⟩, sInter_empty⟩⟩ inter_sets := by rintro _ _ ⟨a, ⟨fina, suba⟩, rfl⟩ ⟨b, ⟨finb, subb⟩, rfl⟩ exact ⟨⋂₀ (a ∪ b), mem_image_of_mem _ ⟨fina.union finb, union_subset suba subb⟩, (sInter_union _ _).subset⟩ #align filter.filter_basis.of_sets Filter.FilterBasis.ofSets lemma FilterBasis.ofSets_sets (s : Set (Set α)) : (FilterBasis.ofSets s).sets = sInter '' { t | Set.Finite t ∧ t ⊆ s } := rfl -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. /-- Definition of `HasBasis` unfolded with implicit set argument. -/ theorem HasBasis.mem_iff (hl : l.HasBasis p s) : t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := hl.mem_iff' t #align filter.has_basis.mem_iff Filter.HasBasis.mem_iffₓ theorem HasBasis.eq_of_same_basis (hl : l.HasBasis p s) (hl' : l'.HasBasis p s) : l = l' := by ext t rw [hl.mem_iff, hl'.mem_iff] #align filter.has_basis.eq_of_same_basis Filter.HasBasis.eq_of_same_basis -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem hasBasis_iff : l.HasBasis p s ↔ ∀ t, t ∈ l ↔ ∃ i, p i ∧ s i ⊆ t := ⟨fun ⟨h⟩ => h, fun h => ⟨h⟩⟩ #align filter.has_basis_iff Filter.hasBasis_iffₓ theorem HasBasis.ex_mem (h : l.HasBasis p s) : ∃ i, p i := (h.mem_iff.mp univ_mem).imp <| fun _ => And.left #align filter.has_basis.ex_mem Filter.HasBasis.ex_mem protected theorem HasBasis.nonempty (h : l.HasBasis p s) : Nonempty ι := nonempty_of_exists h.ex_mem #align filter.has_basis.nonempty Filter.HasBasis.nonempty protected theorem IsBasis.hasBasis (h : IsBasis p s) : HasBasis h.filter p s := ⟨fun t => by simp only [h.mem_filter_iff, exists_prop]⟩ #align filter.is_basis.has_basis Filter.IsBasis.hasBasis protected theorem HasBasis.mem_of_superset (hl : l.HasBasis p s) (hi : p i) (ht : s i ⊆ t) : t ∈ l := hl.mem_iff.2 ⟨i, hi, ht⟩ #align filter.has_basis.mem_of_superset Filter.HasBasis.mem_of_superset theorem HasBasis.mem_of_mem (hl : l.HasBasis p s) (hi : p i) : s i ∈ l := hl.mem_of_superset hi Subset.rfl #align filter.has_basis.mem_of_mem Filter.HasBasis.mem_of_mem /-- Index of a basis set such that `s i ⊆ t` as an element of `Subtype p`. -/ noncomputable def HasBasis.index (h : l.HasBasis p s) (t : Set α) (ht : t ∈ l) : { i : ι // p i } := ⟨(h.mem_iff.1 ht).choose, (h.mem_iff.1 ht).choose_spec.1⟩ #align filter.has_basis.index Filter.HasBasis.index theorem HasBasis.property_index (h : l.HasBasis p s) (ht : t ∈ l) : p (h.index t ht) := (h.index t ht).2 #align filter.has_basis.property_index Filter.HasBasis.property_index theorem HasBasis.set_index_mem (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ∈ l := h.mem_of_mem <| h.property_index _ #align filter.has_basis.set_index_mem Filter.HasBasis.set_index_mem theorem HasBasis.set_index_subset (h : l.HasBasis p s) (ht : t ∈ l) : s (h.index t ht) ⊆ t := (h.mem_iff.1 ht).choose_spec.2 #align filter.has_basis.set_index_subset Filter.HasBasis.set_index_subset theorem HasBasis.isBasis (h : l.HasBasis p s) : IsBasis p s where nonempty := h.ex_mem inter hi hj := by simpa only [h.mem_iff] using inter_mem (h.mem_of_mem hi) (h.mem_of_mem hj) #align filter.has_basis.is_basis Filter.HasBasis.isBasis theorem HasBasis.filter_eq (h : l.HasBasis p s) : h.isBasis.filter = l := by ext U simp [h.mem_iff, IsBasis.mem_filter_iff] #align filter.has_basis.filter_eq Filter.HasBasis.filter_eq theorem HasBasis.eq_generate (h : l.HasBasis p s) : l = generate { U | ∃ i, p i ∧ s i = U } := by rw [← h.isBasis.filter_eq_generate, h.filter_eq] #align filter.has_basis.eq_generate Filter.HasBasis.eq_generate theorem generate_eq_generate_inter (s : Set (Set α)) : generate s = generate (sInter '' { t | Set.Finite t ∧ t ⊆ s }) := by rw [← FilterBasis.ofSets_sets, FilterBasis.generate, ← (hasBasis_generate s).filter_eq]; rfl #align filter.generate_eq_generate_inter Filter.generate_eq_generate_inter theorem ofSets_filter_eq_generate (s : Set (Set α)) : (FilterBasis.ofSets s).filter = generate s := by rw [← (FilterBasis.ofSets s).generate, FilterBasis.ofSets_sets, ← generate_eq_generate_inter] #align filter.of_sets_filter_eq_generate Filter.ofSets_filter_eq_generate protected theorem _root_.FilterBasis.hasBasis (B : FilterBasis α) : HasBasis B.filter (fun s : Set α => s ∈ B) id := ⟨fun _ => B.mem_filter_iff⟩ #align filter_basis.has_basis FilterBasis.hasBasis theorem HasBasis.to_hasBasis' (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → s' i' ∈ l) : l.HasBasis p' s' := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i', hi', ht⟩ => mem_of_superset (h' i' hi') ht⟩⟩ rcases hl.mem_iff.1 ht with ⟨i, hi, ht⟩ rcases h i hi with ⟨i', hi', hs's⟩ exact ⟨i', hi', hs's.trans ht⟩ #align filter.has_basis.to_has_basis' Filter.HasBasis.to_hasBasis' theorem HasBasis.to_hasBasis (hl : l.HasBasis p s) (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l.HasBasis p' s' := hl.to_hasBasis' h fun i' hi' => let ⟨i, hi, hss'⟩ := h' i' hi' hl.mem_iff.2 ⟨i, hi, hss'⟩ #align filter.has_basis.to_has_basis Filter.HasBasis.to_hasBasis protected lemma HasBasis.congr (hl : l.HasBasis p s) {p' s'} (hp : ∀ i, p i ↔ p' i) (hs : ∀ i, p i → s i = s' i) : l.HasBasis p' s' := ⟨fun t ↦ by simp only [hl.mem_iff, ← hp]; exact exists_congr fun i ↦ and_congr_right fun hi ↦ hs i hi ▸ Iff.rfl⟩ theorem HasBasis.to_subset (hl : l.HasBasis p s) {t : ι → Set α} (h : ∀ i, p i → t i ⊆ s i) (ht : ∀ i, p i → t i ∈ l) : l.HasBasis p t := hl.to_hasBasis' (fun i hi => ⟨i, hi, h i hi⟩) ht #align filter.has_basis.to_subset Filter.HasBasis.to_subset theorem HasBasis.eventually_iff (hl : l.HasBasis p s) {q : α → Prop} : (∀ᶠ x in l, q x) ↔ ∃ i, p i ∧ ∀ ⦃x⦄, x ∈ s i → q x := by simpa using hl.mem_iff #align filter.has_basis.eventually_iff Filter.HasBasis.eventually_iff theorem HasBasis.frequently_iff (hl : l.HasBasis p s) {q : α → Prop} : (∃ᶠ x in l, q x) ↔ ∀ i, p i → ∃ x ∈ s i, q x := by simp only [Filter.Frequently, hl.eventually_iff]; push_neg; rfl #align filter.has_basis.frequently_iff Filter.HasBasis.frequently_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.exists_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P t → P s) : (∃ s ∈ l, P s) ↔ ∃ i, p i ∧ P (s i) := ⟨fun ⟨_s, hs, hP⟩ => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs ⟨i, hi, mono his hP⟩, fun ⟨i, hi, hP⟩ => ⟨s i, hl.mem_of_mem hi, hP⟩⟩ #align filter.has_basis.exists_iff Filter.HasBasis.exists_iffₓ theorem HasBasis.forall_iff (hl : l.HasBasis p s) {P : Set α → Prop} (mono : ∀ ⦃s t⦄, s ⊆ t → P s → P t) : (∀ s ∈ l, P s) ↔ ∀ i, p i → P (s i) := ⟨fun H i hi => H (s i) <| hl.mem_of_mem hi, fun H _s hs => let ⟨i, hi, his⟩ := hl.mem_iff.1 hs mono his (H i hi)⟩ #align filter.has_basis.forall_iff Filter.HasBasis.forall_iff protected theorem HasBasis.neBot_iff (hl : l.HasBasis p s) : NeBot l ↔ ∀ {i}, p i → (s i).Nonempty := forall_mem_nonempty_iff_neBot.symm.trans <| hl.forall_iff fun _ _ => Nonempty.mono #align filter.has_basis.ne_bot_iff Filter.HasBasis.neBot_iff theorem HasBasis.eq_bot_iff (hl : l.HasBasis p s) : l = ⊥ ↔ ∃ i, p i ∧ s i = ∅ := not_iff_not.1 <| neBot_iff.symm.trans <| hl.neBot_iff.trans <| by simp only [not_exists, not_and, nonempty_iff_ne_empty] #align filter.has_basis.eq_bot_iff Filter.HasBasis.eq_bot_iff theorem generate_neBot_iff {s : Set (Set α)} : NeBot (generate s) ↔ ∀ t, t ⊆ s → t.Finite → (⋂₀ t).Nonempty := (hasBasis_generate s).neBot_iff.trans <| by simp only [← and_imp, and_comm] #align filter.generate_ne_bot_iff Filter.generate_neBot_iff theorem basis_sets (l : Filter α) : l.HasBasis (fun s : Set α => s ∈ l) id := ⟨fun _ => exists_mem_subset_iff.symm⟩ #align filter.basis_sets Filter.basis_sets theorem asBasis_filter (f : Filter α) : f.asBasis.filter = f := Filter.ext fun _ => exists_mem_subset_iff #align filter.as_basis_filter Filter.asBasis_filter theorem hasBasis_self {l : Filter α} {P : Set α → Prop} : HasBasis l (fun s => s ∈ l ∧ P s) id ↔ ∀ t ∈ l, ∃ r ∈ l, P r ∧ r ⊆ t := by simp only [hasBasis_iff, id, and_assoc] exact forall_congr' fun s => ⟨fun h => h.1, fun h => ⟨h, fun ⟨t, hl, _, hts⟩ => mem_of_superset hl hts⟩⟩ #align filter.has_basis_self Filter.hasBasis_self theorem HasBasis.comp_surjective (h : l.HasBasis p s) {g : ι' → ι} (hg : Function.Surjective g) : l.HasBasis (p ∘ g) (s ∘ g) := ⟨fun _ => h.mem_iff.trans hg.exists⟩ #align filter.has_basis.comp_surjective Filter.HasBasis.comp_surjective theorem HasBasis.comp_equiv (h : l.HasBasis p s) (e : ι' ≃ ι) : l.HasBasis (p ∘ e) (s ∘ e) := h.comp_surjective e.surjective #align filter.has_basis.comp_equiv Filter.HasBasis.comp_equiv /-- If `{s i | p i}` is a basis of a filter `l` and each `s i` includes `s j` such that `p j ∧ q j`, then `{s j | p j ∧ q j}` is a basis of `l`. -/ theorem HasBasis.restrict (h : l.HasBasis p s) {q : ι → Prop} (hq : ∀ i, p i → ∃ j, p j ∧ q j ∧ s j ⊆ s i) : l.HasBasis (fun i => p i ∧ q i) s := by refine' ⟨fun t => ⟨fun ht => _, fun ⟨i, hpi, hti⟩ => h.mem_iff.2 ⟨i, hpi.1, hti⟩⟩⟩ rcases h.mem_iff.1 ht with ⟨i, hpi, hti⟩ rcases hq i hpi with ⟨j, hpj, hqj, hji⟩ exact ⟨j, ⟨hpj, hqj⟩, hji.trans hti⟩ #align filter.has_basis.restrict Filter.HasBasis.restrict /-- If `{s i | p i}` is a basis of a filter `l` and `V ∈ l`, then `{s i | p i ∧ s i ⊆ V}` is a basis of `l`. -/ theorem HasBasis.restrict_subset (h : l.HasBasis p s) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun i => p i ∧ s i ⊆ V) s := h.restrict fun _i hi => (h.mem_iff.1 (inter_mem hV (h.mem_of_mem hi))).imp fun _j hj => ⟨hj.1, subset_inter_iff.1 hj.2⟩ #align filter.has_basis.restrict_subset Filter.HasBasis.restrict_subset theorem HasBasis.hasBasis_self_subset {p : Set α → Prop} (h : l.HasBasis (fun s => s ∈ l ∧ p s) id) {V : Set α} (hV : V ∈ l) : l.HasBasis (fun s => s ∈ l ∧ p s ∧ s ⊆ V) id := by simpa only [and_assoc] using h.restrict_subset hV #align filter.has_basis.has_basis_self_subset Filter.HasBasis.hasBasis_self_subset theorem HasBasis.ge_iff (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → s' i' ∈ l := ⟨fun h _i' hi' => h <| hl'.mem_of_mem hi', fun h _s hs => let ⟨_i', hi', hs⟩ := hl'.mem_iff.1 hs mem_of_superset (h _ hi') hs⟩ #align filter.has_basis.ge_iff Filter.HasBasis.ge_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_iff (hl : l.HasBasis p s) : l ≤ l' ↔ ∀ t ∈ l', ∃ i, p i ∧ s i ⊆ t := by simp only [le_def, hl.mem_iff] #align filter.has_basis.le_iff Filter.HasBasis.le_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.le_basis_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : l ≤ l' ↔ ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i' := by simp only [hl'.ge_iff, hl.mem_iff] #align filter.has_basis.le_basis_iff Filter.HasBasis.le_basis_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.ext (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') (h : ∀ i, p i → ∃ i', p' i' ∧ s' i' ⊆ s i) (h' : ∀ i', p' i' → ∃ i, p i ∧ s i ⊆ s' i') : l = l' := by apply le_antisymm · rw [hl.le_basis_iff hl'] simpa using h' · rw [hl'.le_basis_iff hl] simpa using h #align filter.has_basis.ext Filter.HasBasis.extₓ theorem HasBasis.inf' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := ⟨by intro t constructor · simp only [mem_inf_iff, hl.mem_iff, hl'.mem_iff] rintro ⟨t, ⟨i, hi, ht⟩, t', ⟨i', hi', ht'⟩, rfl⟩ exact ⟨⟨i, i'⟩, ⟨hi, hi'⟩, inter_subset_inter ht ht'⟩ · rintro ⟨⟨i, i'⟩, ⟨hi, hi'⟩, H⟩ exact mem_inf_of_inter (hl.mem_of_mem hi) (hl'.mem_of_mem hi') H⟩ #align filter.has_basis.inf' Filter.HasBasis.inf' theorem HasBasis.inf {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊓ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∩ s' i.2 := (hl.inf' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.inf Filter.HasBasis.inf theorem hasBasis_iInf' {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Set ι × ∀ i, ι' i => If.1.Finite ∧ ∀ i ∈ If.1, p i (If.2 i)) fun If : Set ι × ∀ i, ι' i => ⋂ i ∈ If.1, s i (If.2 i) := ⟨by intro t constructor · simp only [mem_iInf', (hl _).mem_iff] rintro ⟨I, hI, V, hV, -, rfl, -⟩ choose u hu using hV exact ⟨⟨I, u⟩, ⟨hI, fun i _ => (hu i).1⟩, iInter₂_mono fun i _ => (hu i).2⟩ · rintro ⟨⟨I, f⟩, ⟨hI₁, hI₂⟩, hsub⟩ refine' mem_of_superset _ hsub exact (biInter_mem hI₁).mpr fun i hi => mem_iInf_of_mem i <| (hl i).mem_of_mem <| hI₂ _ hi⟩ #align filter.has_basis_infi' Filter.hasBasis_iInf' theorem hasBasis_iInf {ι : Type*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨅ i, l i).HasBasis (fun If : Σ I : Set ι, ∀ i : I, ι' i => If.1.Finite ∧ ∀ i : If.1, p i (If.2 i)) fun If => ⋂ i : If.1, s i (If.2 i) := by refine' ⟨fun t => ⟨fun ht => _, _⟩⟩ · rcases (hasBasis_iInf' hl).mem_iff.mp ht with ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ exact ⟨⟨I, fun i => f i⟩, ⟨hI, Subtype.forall.mpr hf⟩, trans (iInter_subtype _ _) hsub⟩ · rintro ⟨⟨I, f⟩, ⟨hI, hf⟩, hsub⟩ refine' mem_of_superset _ hsub cases hI.nonempty_fintype exact iInter_mem.2 fun i => mem_iInf_of_mem ↑i <| (hl i).mem_of_mem <| hf _ #align filter.has_basis_infi Filter.hasBasis_iInf theorem hasBasis_iInf_of_directed' {ι : Type*} {ι' : ι → Sort _} [Nonempty ι] {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : Σi, ι' i => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Sigma.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed' Filter.hasBasis_iInf_of_directed' theorem hasBasis_iInf_of_directed {ι : Type*} {ι' : Sort _} [Nonempty ι] {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i, (l i).HasBasis (p i) (s i)) (h : Directed (· ≥ ·) l) : (⨅ i, l i).HasBasis (fun ii' : ι × ι' => p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_iInf_of_directed h, Prod.exists] exact exists_congr fun i => (hl i).mem_iff #align filter.has_basis_infi_of_directed Filter.hasBasis_iInf_of_directed theorem hasBasis_biInf_of_directed' {ι : Type*} {ι' : ι → Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ∀ i, ι' i → Set α) (p : ∀ i, ι' i → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : Σi, ι' i => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Sigma.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed' Filter.hasBasis_biInf_of_directed' theorem hasBasis_biInf_of_directed {ι : Type*} {ι' : Sort _} {dom : Set ι} (hdom : dom.Nonempty) {l : ι → Filter α} (s : ι → ι' → Set α) (p : ι → ι' → Prop) (hl : ∀ i ∈ dom, (l i).HasBasis (p i) (s i)) (h : DirectedOn (l ⁻¹'o GE.ge) dom) : (⨅ i ∈ dom, l i).HasBasis (fun ii' : ι × ι' => ii'.1 ∈ dom ∧ p ii'.1 ii'.2) fun ii' => s ii'.1 ii'.2 := by refine' ⟨fun t => _⟩ rw [mem_biInf_of_directed h hdom, Prod.exists] refine' exists_congr fun i => ⟨_, _⟩ · rintro ⟨hi, hti⟩ rcases (hl i hi).mem_iff.mp hti with ⟨b, hb, hbt⟩ exact ⟨b, ⟨hi, hb⟩, hbt⟩ · rintro ⟨b, ⟨hi, hb⟩, hibt⟩ exact ⟨hi, (hl i hi).mem_iff.mpr ⟨b, hb, hibt⟩⟩ #align filter.has_basis_binfi_of_directed Filter.hasBasis_biInf_of_directed theorem hasBasis_principal (t : Set α) : (𝓟 t).HasBasis (fun _ : Unit => True) fun _ => t := ⟨fun U => by simp⟩ #align filter.has_basis_principal Filter.hasBasis_principal theorem hasBasis_pure (x : α) : (pure x : Filter α).HasBasis (fun _ : Unit => True) fun _ => {x} := by simp only [← principal_singleton, hasBasis_principal] #align filter.has_basis_pure Filter.hasBasis_pure theorem HasBasis.sup' (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : PProd ι ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := ⟨by intro t simp_rw [mem_sup, hl.mem_iff, hl'.mem_iff, PProd.exists, union_subset_iff, ← exists_and_right, ← exists_and_left] simp only [and_assoc, and_left_comm]⟩ #align filter.has_basis.sup' Filter.HasBasis.sup' theorem HasBasis.sup {ι ι' : Type*} {p : ι → Prop} {s : ι → Set α} {p' : ι' → Prop} {s' : ι' → Set α} (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : (l ⊔ l').HasBasis (fun i : ι × ι' => p i.1 ∧ p' i.2) fun i => s i.1 ∪ s' i.2 := (hl.sup' hl').comp_equiv Equiv.pprodEquivProd.symm #align filter.has_basis.sup Filter.HasBasis.sup theorem hasBasis_iSup {ι : Sort*} {ι' : ι → Type*} {l : ι → Filter α} {p : ∀ i, ι' i → Prop} {s : ∀ i, ι' i → Set α} (hl : ∀ i, (l i).HasBasis (p i) (s i)) : (⨆ i, l i).HasBasis (fun f : ∀ i, ι' i => ∀ i, p i (f i)) fun f : ∀ i, ι' i => ⋃ i, s i (f i) := hasBasis_iff.mpr fun t => by simp only [hasBasis_iff, (hl _).mem_iff, Classical.skolem, forall_and, iUnion_subset_iff, mem_iSup] #align filter.has_basis_supr Filter.hasBasis_iSup theorem HasBasis.sup_principal (hl : l.HasBasis p s) (t : Set α) : (l ⊔ 𝓟 t).HasBasis p fun i => s i ∪ t := ⟨fun u => by simp only [(hl.sup' (hasBasis_principal t)).mem_iff, PProd.exists, exists_prop, and_true_iff, Unique.exists_iff]⟩ #align filter.has_basis.sup_principal Filter.HasBasis.sup_principal theorem HasBasis.sup_pure (hl : l.HasBasis p s) (x : α) : (l ⊔ pure x).HasBasis p fun i => s i ∪ {x} := by simp only [← principal_singleton, hl.sup_principal] #align filter.has_basis.sup_pure Filter.HasBasis.sup_pure theorem HasBasis.inf_principal (hl : l.HasBasis p s) (s' : Set α) : (l ⊓ 𝓟 s').HasBasis p fun i => s i ∩ s' := ⟨fun t => by simp only [mem_inf_principal, hl.mem_iff, subset_def, mem_setOf_eq, mem_inter_iff, and_imp]⟩ #align filter.has_basis.inf_principal Filter.HasBasis.inf_principal theorem HasBasis.principal_inf (hl : l.HasBasis p s) (s' : Set α) : (𝓟 s' ⊓ l).HasBasis p fun i => s' ∩ s i := by simpa only [inf_comm, inter_comm] using hl.inf_principal s' #align filter.has_basis.principal_inf Filter.HasBasis.principal_inf theorem HasBasis.inf_basis_neBot_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃i'⦄, p' i' → (s i ∩ s' i').Nonempty := (hl.inf' hl').neBot_iff.trans <| by simp [@forall_swap _ ι'] #align filter.has_basis.inf_basis_ne_bot_iff Filter.HasBasis.inf_basis_neBot_iff theorem HasBasis.inf_neBot_iff (hl : l.HasBasis p s) : NeBot (l ⊓ l') ↔ ∀ ⦃i⦄, p i → ∀ ⦃s'⦄, s' ∈ l' → (s i ∩ s').Nonempty := hl.inf_basis_neBot_iff l'.basis_sets #align filter.has_basis.inf_ne_bot_iff Filter.HasBasis.inf_neBot_iff theorem HasBasis.inf_principal_neBot_iff (hl : l.HasBasis p s) {t : Set α} : NeBot (l ⊓ 𝓟 t) ↔ ∀ ⦃i⦄, p i → (s i ∩ t).Nonempty := (hl.inf_principal t).neBot_iff #align filter.has_basis.inf_principal_ne_bot_iff Filter.HasBasis.inf_principal_neBot_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : Disjoint l l' ↔ ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := not_iff_not.mp <| by simp only [_root_.disjoint_iff, ← Ne.def, ← neBot_iff, inf_eq_inter, hl.inf_basis_neBot_iff hl', not_exists, not_and, bot_eq_empty, ← nonempty_iff_ne_empty] #align filter.has_basis.disjoint_iff Filter.HasBasis.disjoint_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem _root_.Disjoint.exists_mem_filter_basis (h : Disjoint l l') (hl : l.HasBasis p s) (hl' : l'.HasBasis p' s') : ∃ i, p i ∧ ∃ i', p' i' ∧ Disjoint (s i) (s' i') := (hl.disjoint_iff hl').1 h #align disjoint.exists_mem_filter_basis Disjoint.exists_mem_filter_basisₓ theorem _root_.Pairwise.exists_mem_filter_basis_of_disjoint {I} [Finite I] {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} (hd : Pairwise (Disjoint on l)) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ Pairwise (Disjoint on fun i => s i (ind i)) := by rcases hd.exists_mem_filter_of_disjoint with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono fun i j hij => hij.mono (ht _) (ht _)⟩ #align pairwise.exists_mem_filter_basis_of_disjoint Pairwise.exists_mem_filter_basis_of_disjoint theorem _root_.Set.PairwiseDisjoint.exists_mem_filter_basis {I : Type*} {l : I → Filter α} {ι : I → Sort*} {p : ∀ i, ι i → Prop} {s : ∀ i, ι i → Set α} {S : Set I} (hd : S.PairwiseDisjoint l) (hS : S.Finite) (h : ∀ i, (l i).HasBasis (p i) (s i)) : ∃ ind : ∀ i, ι i, (∀ i, p i (ind i)) ∧ S.PairwiseDisjoint fun i => s i (ind i) := by rcases hd.exists_mem_filter hS with ⟨t, htl, hd⟩ choose ind hp ht using fun i => (h i).mem_iff.1 (htl i) exact ⟨ind, hp, hd.mono ht⟩ #align set.pairwise_disjoint.exists_mem_filter_basis Set.PairwiseDisjoint.exists_mem_filter_basis theorem inf_neBot_iff : NeBot (l ⊓ l') ↔ ∀ ⦃s : Set α⦄, s ∈ l → ∀ ⦃s'⦄, s' ∈ l' → (s ∩ s').Nonempty := l.basis_sets.inf_neBot_iff #align filter.inf_ne_bot_iff Filter.inf_neBot_iff theorem inf_principal_neBot_iff {s : Set α} : NeBot (l ⊓ 𝓟 s) ↔ ∀ U ∈ l, (U ∩ s).Nonempty := l.basis_sets.inf_principal_neBot_iff #align filter.inf_principal_ne_bot_iff Filter.inf_principal_neBot_iff theorem mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∈ f ↔ f ⊓ 𝓟 sᶜ = ⊥ := by refine' not_iff_not.1 ((inf_principal_neBot_iff.trans _).symm.trans neBot_iff) exact ⟨fun h hs => by simpa [Set.not_nonempty_empty] using h s hs, fun hs t ht => inter_compl_nonempty_iff.2 fun hts => hs <| mem_of_superset ht hts⟩ #align filter.mem_iff_inf_principal_compl Filter.mem_iff_inf_principal_compl theorem not_mem_iff_inf_principal_compl {f : Filter α} {s : Set α} : s ∉ f ↔ NeBot (f ⊓ 𝓟 sᶜ) := (not_congr mem_iff_inf_principal_compl).trans neBot_iff.symm #align filter.not_mem_iff_inf_principal_compl Filter.not_mem_iff_inf_principal_compl @[simp] theorem disjoint_principal_right {f : Filter α} {s : Set α} : Disjoint f (𝓟 s) ↔ sᶜ ∈ f := by rw [mem_iff_inf_principal_compl, compl_compl, disjoint_iff] #align filter.disjoint_principal_right Filter.disjoint_principal_right @[simp] theorem disjoint_principal_left {f : Filter α} {s : Set α} : Disjoint (𝓟 s) f ↔ sᶜ ∈ f := by rw [disjoint_comm, disjoint_principal_right] #align filter.disjoint_principal_left Filter.disjoint_principal_left @[simp 1100] -- porting note: higher priority for linter theorem disjoint_principal_principal {s t : Set α} : Disjoint (𝓟 s) (𝓟 t) ↔ Disjoint s t := by rw [← subset_compl_iff_disjoint_left, disjoint_principal_left, mem_principal] #align filter.disjoint_principal_principal Filter.disjoint_principal_principal alias ⟨_, _root_.Disjoint.filter_principal⟩ := disjoint_principal_principal #align disjoint.filter_principal Disjoint.filter_principal @[simp] theorem disjoint_pure_pure {x y : α} : Disjoint (pure x : Filter α) (pure y) ↔ x ≠ y := by simp only [← principal_singleton, disjoint_principal_principal, disjoint_singleton] #align filter.disjoint_pure_pure Filter.disjoint_pure_pure @[simp] theorem compl_diagonal_mem_prod {l₁ l₂ : Filter α} : (diagonal α)ᶜ ∈ l₁ ×ˢ l₂ ↔ Disjoint l₁ l₂ := by simp only [mem_prod_iff, Filter.disjoint_iff, prod_subset_compl_diagonal_iff_disjoint] #align filter.compl_diagonal_mem_prod Filter.compl_diagonal_mem_prod -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_left (h : l.HasBasis p s) : Disjoint l l' ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := by simp only [h.disjoint_iff l'.basis_sets, id, ← disjoint_principal_left, (hasBasis_principal _).disjoint_iff l'.basis_sets, true_and, Unique.exists_iff] #align filter.has_basis.disjoint_iff_left Filter.HasBasis.disjoint_iff_leftₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.disjoint_iff_right (h : l.HasBasis p s) : Disjoint l' l ↔ ∃ i, p i ∧ (s i)ᶜ ∈ l' := disjoint_comm.trans h.disjoint_iff_left #align filter.has_basis.disjoint_iff_right Filter.HasBasis.disjoint_iff_rightₓ theorem le_iff_forall_inf_principal_compl {f g : Filter α} : f ≤ g ↔ ∀ V ∈ g, f ⊓ 𝓟 Vᶜ = ⊥ := forall₂_congr fun _ _ => mem_iff_inf_principal_compl #align filter.le_iff_forall_inf_principal_compl Filter.le_iff_forall_inf_principal_compl theorem inf_neBot_iff_frequently_left {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in f, p x) → ∃ᶠ x in g, p x := by simp only [inf_neBot_iff, frequently_iff, and_comm]; rfl #align filter.inf_ne_bot_iff_frequently_left Filter.inf_neBot_iff_frequently_left theorem inf_neBot_iff_frequently_right {f g : Filter α} : NeBot (f ⊓ g) ↔ ∀ {p : α → Prop}, (∀ᶠ x in g, p x) → ∃ᶠ x in f, p x := by rw [inf_comm] exact inf_neBot_iff_frequently_left #align filter.inf_ne_bot_iff_frequently_right Filter.inf_neBot_iff_frequently_right theorem HasBasis.eq_biInf (h : l.HasBasis p s) : l = ⨅ (i) (_ : p i), 𝓟 (s i) := eq_biInf_of_mem_iff_exists_mem <| fun {_} => by simp only [h.mem_iff, mem_principal, exists_prop] #align filter.has_basis.eq_binfi Filter.HasBasis.eq_biInf theorem HasBasis.eq_iInf (h : l.HasBasis (fun _ => True) s) : l = ⨅ i, 𝓟 (s i) := by simpa only [iInf_true] using h.eq_biInf #align filter.has_basis.eq_infi Filter.HasBasis.eq_iInf theorem hasBasis_iInf_principal {s : ι → Set α} (h : Directed (· ≥ ·) s) [Nonempty ι] : (⨅ i, 𝓟 (s i)).HasBasis (fun _ => True) s := ⟨fun t => by simpa only [true_and] using mem_iInf_of_directed (h.mono_comp monotone_principal.dual) t⟩ #align filter.has_basis_infi_principal Filter.hasBasis_iInf_principal /-- If `s : ι → Set α` is an indexed family of sets, then finite intersections of `s i` form a basis of `⨅ i, 𝓟 (s i)`. -/ theorem hasBasis_iInf_principal_finite {ι : Type*} (s : ι → Set α) : (⨅ i, 𝓟 (s i)).HasBasis (fun t : Set ι => t.Finite) fun t => ⋂ i ∈ t, s i := by refine' ⟨fun U => (mem_iInf_finite _).trans _⟩ simp only [iInf_principal_finset, mem_iUnion, mem_principal, exists_prop, exists_finite_iff_finset, Finset.set_biInter_coe] #align filter.has_basis_infi_principal_finite Filter.hasBasis_iInf_principal_finite theorem hasBasis_biInf_principal {s : β → Set α} {S : Set β} (h : DirectedOn (s ⁻¹'o (· ≥ ·)) S) (ne : S.Nonempty) : (⨅ i ∈ S, 𝓟 (s i)).HasBasis (fun i => i ∈ S) s := ⟨fun t => by refine' mem_biInf_of_directed _ ne rw [directedOn_iff_directed, ← directed_comp] at h ⊢ refine' h.mono_comp _ exact fun _ _ => principal_mono.2⟩ #align filter.has_basis_binfi_principal Filter.hasBasis_biInf_principal theorem hasBasis_biInf_principal' {ι : Type*} {p : ι → Prop} {s : ι → Set α} (h : ∀ i, p i → ∀ j, p j → ∃ k, p k ∧ s k ⊆ s i ∧ s k ⊆ s j) (ne : ∃ i, p i) : (⨅ (i) (_ : p i), 𝓟 (s i)).HasBasis p s := Filter.hasBasis_biInf_principal h ne #align filter.has_basis_binfi_principal' Filter.hasBasis_biInf_principal' theorem HasBasis.map (f : α → β) (hl : l.HasBasis p s) : (l.map f).HasBasis p fun i => f '' s i := ⟨fun t => by simp only [mem_map, image_subset_iff, hl.mem_iff, preimage]⟩ #align filter.has_basis.map Filter.HasBasis.map theorem HasBasis.comap (f : β → α) (hl : l.HasBasis p s) : (l.comap f).HasBasis p fun i => f ⁻¹' s i := ⟨fun t => by simp only [mem_comap', hl.mem_iff] refine exists_congr (fun i => Iff.rfl.and ?_) exact ⟨fun h x hx => h hx rfl, fun h y hy x hx => h <| by rwa [mem_preimage, hx]⟩⟩ #align filter.has_basis.comap Filter.HasBasis.comap theorem comap_hasBasis (f : α → β) (l : Filter β) : HasBasis (comap f l) (fun s : Set β => s ∈ l) fun s => f ⁻¹' s := ⟨fun _ => mem_comap⟩ #align filter.comap_has_basis Filter.comap_hasBasis theorem HasBasis.forall_mem_mem (h : HasBasis l p s) {x : α} : (∀ t ∈ l, x ∈ t) ↔ ∀ i, p i → x ∈ s i := by simp only [h.mem_iff, exists_imp, and_imp] exact ⟨fun h i hi => h (s i) i hi Subset.rfl, fun h t i hi ht => ht (h i hi)⟩ #align filter.has_basis.forall_mem_mem Filter.HasBasis.forall_mem_mem protected theorem HasBasis.biInf_mem [CompleteLattice β] {f : Set α → β} (h : HasBasis l p s) (hf : Monotone f) : ⨅ t ∈ l, f t = ⨅ (i) (_ : p i), f (s i) := le_antisymm (le_iInf₂ fun i hi => iInf₂_le (s i) (h.mem_of_mem hi)) <| le_iInf₂ fun _t ht => let ⟨i, hpi, hi⟩ := h.mem_iff.1 ht iInf₂_le_of_le i hpi (hf hi) #align filter.has_basis.binfi_mem Filter.HasBasis.biInf_mem protected theorem HasBasis.biInter_mem {f : Set α → Set β} (h : HasBasis l p s) (hf : Monotone f) : ⋂ t ∈ l, f t = ⋂ (i) (_ : p i), f (s i) := h.biInf_mem hf #align filter.has_basis.bInter_mem Filter.HasBasis.biInter_mem protected theorem HasBasis.ker (h : HasBasis l p s) : l.ker = ⋂ (i) (_ : p i), s i := l.ker_def.trans $ h.biInter_mem monotone_id #align filter.has_basis.sInter_sets Filter.HasBasis.ker variable {ι'' : Type*} [Preorder ι''] (l) (s'' : ι'' → Set α) /-- `IsAntitoneBasis s` means the image of `s` is a filter basis such that `s` is decreasing. -/ structure IsAntitoneBasis extends IsBasis (fun _ => True) s'' : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s'' #align filter.is_antitone_basis Filter.IsAntitoneBasis /-- We say that a filter `l` has an antitone basis `s : ι → Set α`, if `t ∈ l` if and only if `t` includes `s i` for some `i`, and `s` is decreasing. -/ structure HasAntitoneBasis (l : Filter α) (s : ι'' → Set α) extends HasBasis l (fun _ => True) s : Prop where /-- The sequence of sets is antitone. -/ protected antitone : Antitone s #align filter.has_antitone_basis Filter.HasAntitoneBasis theorem HasAntitoneBasis.map {l : Filter α} {s : ι'' → Set α} {m : α → β} (hf : HasAntitoneBasis l s) : HasAntitoneBasis (map m l) fun n => m '' s n := ⟨HasBasis.map _ hf.toHasBasis, fun _ _ h => image_subset _ <| hf.2 h⟩ #align filter.has_antitone_basis.map Filter.HasAntitoneBasis.map lemma HasAntitoneBasis.iInf_principal {ι : Type*} [Preorder ι] [Nonempty ι] [IsDirected ι (· ≤ ·)] {s : ι → Set α} (hs : Antitone s) : (⨅ i, 𝓟 (s i)).HasAntitoneBasis s := ⟨hasBasis_iInf_principal hs.directed_ge, hs⟩ end SameType section TwoTypes variable {la : Filter α} {pa : ι → Prop} {sa : ι → Set α} {lb : Filter β} {pb : ι' → Prop} {sb : ι' → Set β} {f : α → β} -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_left_iff (hla : la.HasBasis pa sa) : Tendsto f la lb ↔ ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := by simp only [Tendsto, (hla.map f).le_iff, image_subset_iff] rfl #align filter.has_basis.tendsto_left_iff Filter.HasBasis.tendsto_left_iffₓ theorem HasBasis.tendsto_right_iff (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := by simp only [Tendsto, hlb.ge_iff, mem_map', Filter.Eventually] #align filter.has_basis.tendsto_right_iff Filter.HasBasis.tendsto_right_iff -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem HasBasis.tendsto_iff (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : Tendsto f la lb ↔ ∀ ib, pb ib → ∃ ia, pa ia ∧ ∀ x ∈ sa ia, f x ∈ sb ib := by simp [hlb.tendsto_right_iff, hla.eventually_iff] #align filter.has_basis.tendsto_iff Filter.HasBasis.tendsto_iffₓ -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_left (H : Tendsto f la lb) (hla : la.HasBasis pa sa) : ∀ t ∈ lb, ∃ i, pa i ∧ MapsTo f (sa i) t := hla.tendsto_left_iff.1 H #align filter.tendsto.basis_left Filter.Tendsto.basis_leftₓ theorem Tendsto.basis_right (H : Tendsto f la lb) (hlb : lb.HasBasis pb sb) : ∀ i, pb i → ∀ᶠ x in la, f x ∈ sb i := hlb.tendsto_right_iff.1 H #align filter.tendsto.basis_right Filter.Tendsto.basis_right -- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`. theorem Tendsto.basis_both (H : Tendsto f la lb) (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : ∀ ib, pb ib → ∃ ia, pa ia ∧ MapsTo f (sa ia) (sb ib) := (hla.tendsto_iff hlb).1 H #align filter.tendsto.basis_both Filter.Tendsto.basis_bothₓ theorem HasBasis.prod_pprod (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : PProd ι ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf' (hlb.comap Prod.snd) #align filter.has_basis.prod_pprod Filter.HasBasis.prod_pprod theorem HasBasis.prod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la ×ˢ lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => sa i.1 ×ˢ sb i.2 := (hla.comap Prod.fst).inf (hlb.comap Prod.snd) #align filter.has_basis.prod Filter.HasBasis.prod theorem HasBasis.prod_same_index {p : ι → Prop} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (h_dir : ∀ {i j}, p i → p j → ∃ k, p k ∧ sa k ⊆ sa i ∧ sb k ⊆ sb j) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := by simp only [hasBasis_iff, (hla.prod_pprod hlb).mem_iff] refine' fun t => ⟨_, _⟩ · rintro ⟨⟨i, j⟩, ⟨hi, hj⟩, hsub : sa i ×ˢ sb j ⊆ t⟩ rcases h_dir hi hj with ⟨k, hk, ki, kj⟩ exact ⟨k, hk, (Set.prod_mono ki kj).trans hsub⟩ · rintro ⟨i, hi, h⟩ exact ⟨⟨i, i⟩, ⟨hi, hi⟩, h⟩ #align filter.has_basis.prod_same_index Filter.HasBasis.prod_same_index theorem HasBasis.prod_same_index_mono {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : MonotoneOn sa { i | p i }) (hsb : MonotoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := hla.prod_same_index hlb fun {i j} hi hj => have : p (min i j) := min_rec' _ hi hj ⟨min i j, this, hsa this hi <| min_le_left _ _, hsb this hj <| min_le_right _ _⟩ #align filter.has_basis.prod_same_index_mono Filter.HasBasis.prod_same_index_mono theorem HasBasis.prod_same_index_anti {ι : Type*} [LinearOrder ι] {p : ι → Prop} {sa : ι → Set α} {sb : ι → Set β} (hla : la.HasBasis p sa) (hlb : lb.HasBasis p sb) (hsa : AntitoneOn sa { i | p i }) (hsb : AntitoneOn sb { i | p i }) : (la ×ˢ lb).HasBasis p fun i => sa i ×ˢ sb i := @HasBasis.prod_same_index_mono _ _ _ _ ιᵒᵈ _ _ _ _ hla hlb hsa.dual_left hsb.dual_left #align filter.has_basis.prod_same_index_anti Filter.HasBasis.prod_same_index_anti theorem HasBasis.prod_self (hl : la.HasBasis pa sa) : (la ×ˢ la).HasBasis pa fun i => sa i ×ˢ sa i := hl.prod_same_index hl fun {i j} hi hj => by simpa only [exists_prop, subset_inter_iff] using hl.mem_iff.1 (inter_mem (hl.mem_of_mem hi) (hl.mem_of_mem hj)) #align filter.has_basis.prod_self Filter.HasBasis.prod_self theorem mem_prod_self_iff {s} : s ∈ la ×ˢ la ↔ ∃ t ∈ la, t ×ˢ t ⊆ s := la.basis_sets.prod_self.mem_iff #align filter.mem_prod_self_iff Filter.mem_prod_self_iff lemma eventually_prod_self_iff {r : α → α → Prop} : (∀ᶠ x in la ×ˢ la, r x.1 x.2) ↔ ∃ t ∈ la, ∀ x ∈ t, ∀ y ∈ t, r x y := mem_prod_self_iff.trans <| by simp only [prod_subset_iff, mem_setOf_eq] theorem HasAntitoneBasis.prod {ι : Type*} [LinearOrder ι] {f : Filter α} {g : Filter β} {s : ι → Set α} {t : ι → Set β} (hf : HasAntitoneBasis f s) (hg : HasAntitoneBasis g t) : HasAntitoneBasis (f ×ˢ g) fun n => s n ×ˢ t n := ⟨hf.1.prod_same_index_anti hg.1 (hf.2.antitoneOn _) (hg.2.antitoneOn _), hf.2.set_prod hg.2⟩ #align filter.has_antitone_basis.prod Filter.HasAntitoneBasis.prod theorem HasBasis.coprod {ι ι' : Type*} {pa : ι → Prop} {sa : ι → Set α} {pb : ι' → Prop} {sb : ι' → Set β} (hla : la.HasBasis pa sa) (hlb : lb.HasBasis pb sb) : (la.coprod lb).HasBasis (fun i : ι × ι' => pa i.1 ∧ pb i.2) fun i => Prod.fst ⁻¹' sa i.1 ∪ Prod.snd ⁻¹' sb i.2 := (hla.comap Prod.fst).sup (hlb.comap Prod.snd) #align filter.has_basis.coprod Filter.HasBasis.coprod end TwoTypes theorem map_sigma_mk_comap {π : α → Type*} {π' : β → Type*} {f : α → β} (hf : Function.Injective f) (g : ∀ a, π a → π' (f a)) (a : α) (l : Filter (π' (f a))) : map (Sigma.mk a) (comap (g a) l) = comap (Sigma.map f g) (map (Sigma.mk (f a)) l) := by refine' (((basis_sets _).comap _).map _).eq_of_same_basis _ convert ((basis_sets l).map (Sigma.mk (f a))).comap (Sigma.map f g) apply image_sigmaMk_preimage_sigmaMap hf #align filter.map_sigma_mk_comap Filter.map_sigma_mk_comap end Filter end sort namespace Filter variable {α β γ ι : Type*} {ι' : Sort*} /-- `IsCountablyGenerated f` means `f = generate s` for some countable `s`. -/ class IsCountablyGenerated (f : Filter α) : Prop where /-- There exists a countable set that generates the filter. -/ out : ∃ s : Set (Set α), s.Countable ∧ f = generate s #align filter.is_countably_generated Filter.IsCountablyGenerated /-- `IsCountableBasis p s` means the image of `s` bounded by `p` is a countable filter basis. -/ structure IsCountableBasis (p : ι → Prop) (s : ι → Set α) extends IsBasis p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.is_countable_basis Filter.IsCountableBasis /-- We say that a filter `l` has a countable basis `s : ι → Set α` bounded by `p : ι → Prop`, if `t ∈ l` if and only if `t` includes `s i` for some `i` such that `p i`, and the set defined by `p` is countable. -/ structure HasCountableBasis (l : Filter α) (p : ι → Prop) (s : ι → Set α) extends HasBasis l p s : Prop where /-- The set of `i` that satisfy the predicate `p` is countable. -/ countable : (setOf p).Countable #align filter.has_countable_basis Filter.HasCountableBasis /-- A countable filter basis `B` on a type `α` is a nonempty countable collection of sets of `α` such that the intersection of two elements of this collection contains some element of the collection. -/ structure CountableFilterBasis (α : Type*) extends FilterBasis α where /-- The set of sets of the filter basis is countable. -/ countable : sets.Countable #align filter.countable_filter_basis Filter.CountableFilterBasis -- For illustration purposes, the countable filter basis defining `(atTop : Filter ℕ)` instance Nat.inhabitedCountableFilterBasis : Inhabited (CountableFilterBasis ℕ) := ⟨⟨default, countable_range fun n => Ici n⟩⟩ #align filter.nat.inhabited_countable_filter_basis Filter.Nat.inhabitedCountableFilterBasis theorem HasCountableBasis.isCountablyGenerated {f : Filter α} {p : ι → Prop} {s : ι → Set α} (h : f.HasCountableBasis p s) : f.IsCountablyGenerated := ⟨⟨{ t | ∃ i, p i ∧ s i = t }, h.countable.image s, h.toHasBasis.eq_generate⟩⟩ #align filter.has_countable_basis.is_countably_generated Filter.HasCountableBasis.isCountablyGenerated theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m; constructor · exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl apply le_antisymm <;>
rw [le_iInf_iff]
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i) := by use fun n => ⋂ m ≤ n, s m; constructor · exact fun i j hij => biInter_mono (Iic_subset_Iic.2 hij) fun n _ => Subset.rfl apply le_antisymm <;>
Mathlib.Order.Filter.Bases.1027_0.YdUKAcRZtFgMABD
theorem antitone_seq_of_seq (s : ℕ → Set α) : ∃ t : ℕ → Set α, Antitone t ∧ ⨅ i, 𝓟 (s i) = ⨅ i, 𝓟 (t i)
Mathlib_Order_Filter_Bases